Glenn I. Hawe, Graham Coates, Duncan T. Wilson, & Roger S. Crouch. (2011). Design decisions in the development of an agent-based simulation for large-scale emergency response. In E. Portela L. S. M.A. Santos (Ed.), 8th International Conference on Information Systems for Crisis Response and Management: From Early-Warning Systems to Preparedness and Training, ISCRAM 2011. Lisbon: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: As part of ongoing research into optimizing the response to large-scale emergencies, an agent-based simulation (ABS) is being developed to evaluate different rescue plans in silico. During the development of this software, decisions regarding its design have been required in order to best satisfy the following specific application requirements: (1) the construction of a sufficiently detailed virtual environment, representing a real geographical area; (2) the programming of a wide variety of agent behaviors using a minimal amount of code; (3) the computational handling of the “large-scale” nature of the emergency; and (4) the presentation of a highly visual user interface, to encourage and facilitate use of the software by practitioners involved in the project. This paper discusses the decisions made in each of these areas, including the novel use of policy-based class design to efficiently program agents. Future developments planned for the software are also outlined.
|
Yasir Javed, Tony Norris, & David Johnston. (2012). Evaluating SAVER: Measuring shared and team situation awareness of emergency decision makers. In Z.Franco J. R. L. Rothkrantz (Ed.), ISCRAM 2012 Conference Proceedings – 9th International Conference on Information Systems for Crisis Response and Management. Vancouver, BC: Simon Fraser University.
Abstract: Large scale emergencies are usually responded to by a team of emergency managers or a number of sub teams for safety and efficiency. Team coordination has attracted considerable research interest, especially from the cognitive, human factors, and ergonomic aspects because shared situation awareness (SSA) and team situation awareness (TSA) of team members are critical for optimal decision making. This paper describes the development of an information system (SAVER) based on SSA and TSA oriented systems design. Validation and evaluation of the implemented design show that decision performance is improved by the SAVER system. © 2012 ISCRAM.
|
Sophia B. Liu, & Leysia Palen. (2009). Spatiotemporal mashups: A survey of current tools to inform next generation crisis support. In S. J. J. Landgren (Ed.), ISCRAM 2009 – 6th International Conference on Information Systems for Crisis Response and Management: Boundary Spanning Initiatives and New Perspectives. Gothenburg: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: Developments in information and communication technology (ICT) have adjusted the opportunities for spatial and temporal representations of data, possibly permitting the simultaneous visualization of how different regions and populations are affected during large-scale emergencies and crises. We surveyed 13 crisis-related mashups to derive some high-level design directions to guide the design and testing of next generation crisis support tools. The current web mashups offer a new way of looking at how crises are spatiotemporally ordered. However, since all technology is constrained by limitations of design choice, examining the limits and possibilities of what current design choices afford can inform attributes of what next generation crisis support tools would require.
|
Marcus Vogt, Kieth Hales, & Dieter Hertweck. (2011). Optimizing ICT portfolios in emergency management: A modular alignment approach. In E. Portela L. S. M.A. Santos (Ed.), 8th International Conference on Information Systems for Crisis Response and Management: From Early-Warning Systems to Preparedness and Training, ISCRAM 2011. Lisbon: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: Today's society is exposed to an increasing number of disasters and large scale emergencies (e.g. earthquake in Haiti, global swine flu, or manmade disasters like the oil spill in the Gulf of Mexico). Information and communication technology (ICT) can help to prevent and mitigate the effects of threatening situations if applied appropriately. In industry ICT governance methods and portfolio management techniques have become important tools to successfully align ICT with business goals. However, the domain of emergency management (EM) has to deal with unpredictable situations, multi organizational collaborations and ad-hoc teams, conditions which make conventional existing methods less useful. Based on a qualitative analysis of several European and Australian EM organizations and government agencies this paper discusses a modular approach to optimize ICT portfolios in Emergency Management organizations in order to achieve strategic ICT alignment.
|
Gerhard Wickler. (2013). Validating procedural knowledge in the open virtual collaboration environment. In J. Geldermann and T. Müller S. Fortier F. F. T. Comes (Ed.), ISCRAM 2013 Conference Proceedings – 10th International Conference on Information Systems for Crisis Response and Management (pp. 607–616). KIT; Baden-Baden: Karlsruher Institut fur Technologie.
Abstract: This paper describes the OpenVCE system, which is an open-source environment that integrates Web 2.0 technology and a 3D virtual world space to support collaborative work, specifically in large-scale emergency response scenarios, where the system has been evaluated. The support is achieved through procedural knowledge that is available to the system. OpenVCE supports the distributed knowledge engineering of procedural knowledge in a semi-formal framework based on a wiki. For the formal aspect it relies on a representation used in AI planning, specifically, Hierarchical Task Networks, which corresponds naturally to the way emergency response procedures are described in existing Standard Operating Procedures. Knowledge engineering is supported by domain analysis that may highlight issues with the representation. The main contribution of this paper lies in a reasonably informal description of the analysis. The procedural knowledge available to OpenVCE can be utilized in the environment through plans generated by a planner and given to the users as intelligent, distributed to-do lists. The system has been evaluated in experiments using emergency response experts, and it was shown that procedural uncertainty could be improved, despite the complex and new technologies involved. Furthermore, the support for knowledge engineering through domain analysis has been evaluated using several domains from the International Planning Competition, and it was possible to bring out some issues with these examples.
|