Abstract: For all emergency response personnel involved in crisis situations it is essential to timely acquire all information critical to their task performance. However, in practice errors occur in the distribution of information between these collaborating actors leading to mistakes and subsequently more damage to the situation. In this paper we present a prototype system for dynamic information distribution able to support the information flow between collaborating crisis actors. The system has been evaluated by means of simulated experiments that use data from a real incident scenario. The results indicate that automated support by means of Machine Learning method works well. Especially, when actor work context features are included, then the performance on selecting and distributing relevant information is high. Furthermore, actors acquire relevant information much faster making group communication much more efficient.