Guido Te Brake, Tjerk De Greef, Jasper Lindenberg, Jouke Rypkema, & Nanja Smets. (2006). Developing adaptive user interfaces using a game-based simulation environment. In M. T. B. Van de Walle (Ed.), Proceedings of ISCRAM 2006 – 3rd International Conference on Information Systems for Crisis Response and Management (pp. 6–10). Newark, NJ: Royal Flemish Academy of Belgium.
Abstract: In dynamic settings, user interfaces can provide more optimal support if they adapt to the context of use. Providing adaptive user interfaces to first responders may therefore be fruitful. A cognitive engineering method that incorporates development iterations in both a simulated and a real-world environment is used to develop new adaptive concepts. In a simulated 3D-world, created with the Unreal Tournament game-engine, a team of emergency personnel have to rescue people and develop an understanding of the situation. We believe a game-based simulation environment can provide an effective platform for experiments in which crisis management situations can be created under controlled circumstances. Using this simulation, support concepts based on adaptive user interfaces can be developed and evaluated before they are implemented in a real-world setting. This paper describes the work that has been done, and presents the design of the planned experiments.
|
Sébastien Tremblay, Peter Berggren, Martin Holmberg, Rego Granlund, Marie-Eve Jobidon, & Paddy Turner. (2012). A multiteam international simulation of joint operations in crisis response. In Z.Franco J. R. L. Rothkrantz (Ed.), ISCRAM 2012 Conference Proceedings – 9th International Conference on Information Systems for Crisis Response and Management. Vancouver, BC: Simon Fraser University.
Abstract: Concepts such as trust, shared understanding, cultural differences, mental workload, and organizational structure all impact upon the effectiveness of an organization (e.g., Tindale & Kameda, 2000), and even more so in the context of large scale multinational operations (e.g, Smith, Granlund, & Lindgen, 2010). In order to study these concepts we plan a multinational, distributed experiment with participants from three nations collaborating in the same virtual environment: Canadian, British, and Swedish participants will work together as part of a multinational MTS to deal with a complex task and gain control of a crisis situation. Empirical research on MTS remains limited (see, e.g., DeChurch & Marks, 2006) particularly at the multinational level where the investigation of MTS has been so far focused on case studies and exercises (e.g., Goodwin, Essens, & Smith, 2012). Therefore, there is a need to empirically study multinational MTS in order to assess the specific issues that multinational operations face, notably cultural and languages differences. The simulation environment used as experimental platform for this project is C3Fire (www.c3fire.org, Granlund & Granlund, 2011). C3Fire creates an environment whereby teams must work together to resolve a crisis in the firefighting domain, with the goal of evacuating people in critical areas, putting out the forest fire, and protecting buildings and other areas of value from the burning forest fire. This platform makes it possible to study participants' collaborative processes when dealing with a set of crisis scenarios in the context of a simulated emergency response situation. To deal efficiently with the crisis management operation, participants need to prioritize between different objectives, identify and protect critical areas, and plan and implement activities based on given resources. All these tasks are distributed between team members, compelling participants to exchange information and coordinate within and between teams to execute the task. The task is divided into three areas of responsibility as follows: 1) Information and Planning, responsible for situation assessment and providing the operating picture; 2) Operation and Logistic, responsible for intervention and resource management; and 3) Search and Rescue, responsible for research and management of civilians. C3Fire is designed to: 1) achieve an optimal compromise between internal and external validity; 2) show flexibility in scenario configuration (spectrum of units and roles – including search and rescue functions; Tremblay et al., 2010), allowing researchers to capture emergency response and crisis management and rapid response planning; 3) be highly configurable for testing many different types of teams (e.g., hierarchical vs. horizontal organizations); and 4) readily provide objective, non-intrusive metrics for assessing teamwork effectiveness (including macrocognitive functions and team processes) as well as quantitative measures of task performance (that take into account conflicting mission goals). © 2012 ISCRAM.
|