|
Rafael A. Gonzalez. (2009). Crisis response simulation combining discrete-event and agent-based modeling. In S. J. J. Landgren (Ed.), ISCRAM 2009 – 6th International Conference on Information Systems for Crisis Response and Management: Boundary Spanning Initiatives and New Perspectives. Gothenburg: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: This paper presents a crisis response simulation model architecture combining a discrete-event simulation (DES) environment for a crisis scenario with an agent-based model of the response organization. In multi-agent systems (MAS) as a computational organization, agents are modeled and implemented separately from the environmental model. We follow this perspective and submit an architecture in which the environment is modeled as a discreteevent simulation, and the crisis response agents are modeled as a multi-agent system. The simultaneous integration and separation of both models allows for independent modifications of the response organization and the scenario, resulting in a testbed that allows testing different organizations to respond to the same scenario or different emergencies for the same organization. It also provides a high-level architecture suggesting the way in which DES and MAS can be combined into a single simulation in a simple way.
|
|
|
Rianne Gouman, Masja Kempen, & Niek Wijngaards. (2010). Actor-agent team experimentation in the context of incident management. In C. Zobel B. T. S. French (Ed.), ISCRAM 2010 – 7th International Conference on Information Systems for Crisis Response and Management: Defining Crisis Management 3.0, Proceedings. Seattle, WA: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: The collaboration between humans (actors) and artificial entities (agents) can be a potential performance boost. Agents, as complementary artificial intelligent entities, can alleviate actors from certain activities, while enlarging the collective effectiveness. This paper describes our approach for experimentation with actors, agents and their interaction. This approach is based on a principled combination of existing empirical research methods and is illustrated by a small experiment which assesses the performance of a specific actor-agent team in comparison with an actor-only team in an incident management context. The REsearch and Simulation toolKit (RESK) is instrumental for controlled and repeatable experimentation. The indicative findings show that the approach is viable and forms a basis for further data collection and comparative experiments. The approach supports applied actor-agent research to show its (dis)advantages as compared to actor-only solutions.
|
|
|
Rego Granlund, Helena Granlund, Nilda Dahlbäck, & Björn J.E. Johansson. (2010). The effect of a geographical information system on communication in professional emergency response organizations. In C. Zobel B. T. S. French (Ed.), ISCRAM 2010 – 7th International Conference on Information Systems for Crisis Response and Management: Defining Crisis Management 3.0, Proceedings. Seattle, WA: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: This paper describes the basic communication analysis performed in a research project with an ambition to investigate the impact of geographical information system (GIS) on crisis management organizations. The goal is to compare the communication between command and control teams that have access to a GIS with geographical position information (GPS) capability in its command post with teams that only have access to paper maps. The method used is controlled experiments using the C3Fire micro-world. A total of 108 professionals, forming 18 teams, participated in the study. The participating professionals were members of Swedish municipal crisis management organizations. The result shows that the communication pattern connected to giving orders have a different distribution depending on if the teams used GIS or paper maps. The result also shows that the communication volume is reduced if the teams use GIS.
|
|
|
Guido Te Brake, Tjerk De Greef, Jasper Lindenberg, Jouke Rypkema, & Nanja Smets. (2006). Developing adaptive user interfaces using a game-based simulation environment. In M. T. B. Van de Walle (Ed.), Proceedings of ISCRAM 2006 – 3rd International Conference on Information Systems for Crisis Response and Management (pp. 6–10). Newark, NJ: Royal Flemish Academy of Belgium.
Abstract: In dynamic settings, user interfaces can provide more optimal support if they adapt to the context of use. Providing adaptive user interfaces to first responders may therefore be fruitful. A cognitive engineering method that incorporates development iterations in both a simulated and a real-world environment is used to develop new adaptive concepts. In a simulated 3D-world, created with the Unreal Tournament game-engine, a team of emergency personnel have to rescue people and develop an understanding of the situation. We believe a game-based simulation environment can provide an effective platform for experiments in which crisis management situations can be created under controlled circumstances. Using this simulation, support concepts based on adaptive user interfaces can be developed and evaluated before they are implemented in a real-world setting. This paper describes the work that has been done, and presents the design of the planned experiments.
|
|
|
Hager, F., Reuter-Oppermann, M., Müller, T., & Ottenburger, S. (2023). Towards the Design of a Simulation-based Decision Support System for Mass-Casualty Incidents. In Jaziar Radianti, Ioannis Dokas, Nicolas Lalone, & Deepak Khazanchi (Eds.), Proceedings of the 20th International ISCRAM Conference (pp. 565–574). Omaha, USA: University of Nebraska at Omaha.
Abstract: In case of a mass-casualty incident, e.g. due to a disaster, a high number of patients need medical care within a short time frame and often, a significant percentage must be transported to a hospital or another suitable care facility. Then, different mass transportation modes (e.g., busses, ships or trains) may be used to quickly transport patients to available medical treatment centres outside of the disaster area. Within the SimPaTrans project, we develop a simulation-based decision support system for locating, sizing and analysing different modes of transport in order to prepare for mass-casualty incidents in Germany. In this paper, we present the outline of the tool as well as a first optimisation use case for transportation patients within the city of Karlsruhe, Germany
|
|
|
Hanna Honkavuo, Markus Jähi: Ari Kosonen, Kalevi Piira, Kalev Rannat, & Jari Soininen, M. M., Kuldar Taveter. (2015). Enhancing the quality of contingency planning by simulation. In L. Palen, M. Buscher, T. Comes, & A. Hughes (Eds.), ISCRAM 2015 Conference Proceedings ? 12th International Conference on Information Systems for Crisis Response and Management. Kristiansand, Norway: University of Agder (UiA).
Abstract: Contingency planning is a significant challenge when dealing with rarely occurring cases. First of all, the situation related threats can be difficult to identify. Moreover, it is difficult to conclude what happens when multiple threats occur simultaneously. In this paper we introduce the idea of an application which allows seamless cooperation between many experts.
In this paper we describe a computer based simulation application which is designed to support contingency planning ? having resources available ? in extreme winter condition. First we introduce the background of the simulation – sparsely populated areas in Northern Finland where long distances and extremely cold weather can make disturbance situations even more difficult to be normalized by authorities. Secondly we present the tools that are used to build up the application. Finally, we discuss what benefits the application offers for the authorities, preparedness planning and society.
|
|
|
Glenn I. Hawe, Duncan T. Wilson, Graham Coates, & Roger S. Crouch. (2012). STORMI: An agent-based simulation environment for evaluating responses to major incidents in the UK. In Z.Franco J. R. L. Rothkrantz (Ed.), ISCRAM 2012 Conference Proceedings – 9th International Conference on Information Systems for Crisis Response and Management. Vancouver, BC: Simon Fraser University.
Abstract: This paper describes work-in-progress regarding STORMI, an agent-based simulation environment for evaluating the response by the emergency services to hypothetical major incidents in the UK. At present, STORMI consists of two main components: a Scenario Designer and a Simulator. The Scenario Designer enables the setting up of a hypothetical multi-site mass casualty incident anywhere in the UK, along with the resources which may be considered for responding to it. This provides input to the Simulator, which through its Multiple Program Multiple Data architecture, models the agents and their environment at a higher level of detail inside incident sites than it does outside, thus focusing attention on the areas of most interest. Furthermore, the multiple programs of the Simulator execute concurrently, thus targeting multi-core processors. © 2012 ISCRAM.
|
|
|
Glenn I. Hawe, Graham Coates, Duncan T. Wilson, & Roger S. Crouch. (2011). Design decisions in the development of an agent-based simulation for large-scale emergency response. In E. Portela L. S. M.A. Santos (Ed.), 8th International Conference on Information Systems for Crisis Response and Management: From Early-Warning Systems to Preparedness and Training, ISCRAM 2011. Lisbon: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: As part of ongoing research into optimizing the response to large-scale emergencies, an agent-based simulation (ABS) is being developed to evaluate different rescue plans in silico. During the development of this software, decisions regarding its design have been required in order to best satisfy the following specific application requirements: (1) the construction of a sufficiently detailed virtual environment, representing a real geographical area; (2) the programming of a wide variety of agent behaviors using a minimal amount of code; (3) the computational handling of the “large-scale” nature of the emergency; and (4) the presentation of a highly visual user interface, to encourage and facilitate use of the software by practitioners involved in the project. This paper discusses the decisions made in each of these areas, including the novel use of policy-based class design to efficiently program agents. Future developments planned for the software are also outlined.
|
|
|
Alison J. Hayes, Jessica Lancaster, Zeno Franco, & Anne Kissack. (2012). Disaster medical education & simulated crisis events: A translational approach. In Z.Franco J. R. L. Rothkrantz (Ed.), ISCRAM 2012 Conference Proceedings – 9th International Conference on Information Systems for Crisis Response and Management. Vancouver, BC: Simon Fraser University.
Abstract: This review addresses current educational and research efforts in disaster medical education (DME) in the United States. Since the events of 9/11, DME has received greater attention. However substantial problems remain in terms of ensuring that large numbers of medical students and residents are exposed to high quality DME – not only Emergency Medicine residents. Barriers to widespread adoption of DME include lack of performance metrics, disagreement task areas, and lack of emphasis on physician leadership. Further, such efforts must ensure retention of key information over periods that are disaster free; utilize objective training metrics that will allow for an evidence base to form; and develop low cost, scalable training approaches that offer greater fidelity to the disaster environment than classroom based instruction. To improve the state of the art, we argue that DME research must move toward a translational science model that integrates important advances in basic information science into application that improve the clinical performance of frontline medical staff who are called on to respond to individual and community needs in the aftermath of disaster. Mid-fidelity, team-in-the-loop simulations developed for disaster manager training may provide an avenue toward improved DME by exposing medical students to scenarios that fundamentally challenge their assumptions in real-time game play. This can be accomplished with lower costs and greater scalability than live exercise or mock-up training approaches. © 2012 ISCRAM.
|
|
|
Janine Hellriegel, & Michael Klafft. (2014). A tool for the simulation of alert message propagation in the general population. In and P.C. Shih. L. Plotnick M. S. P. S.R. Hiltz (Ed.), ISCRAM 2014 Conference Proceedings – 11th International Conference on Information Systems for Crisis Response and Management (pp. 65–69). University Park, PA: The Pennsylvania State University.
Abstract: Informing and alerting the population in disaster situations is a challenging task. Numerous situational factors have to be considered, as well as the impact of a plethora of communication channels, and multiplication effects in the population. In order to optimize the alerting strategies and enhance alert planning, it would be beneficial to model the dissemination of alerts. In this paper, we present a general overview of an alert dissemination model as well as its prototypical implementation in a simulation software. The software takes situational parameters such as time of day and location into account and can even infer characteristics of the alerting infrastructure from geospatial information.
|
|
|
Arthur H. Hendela, Xiang Yao, Murray Turoff, Starr Roxanne Hiltz, & Michael J. Chumer. (2006). Virtual emergency preparedness gaming: A follow-up study. In M. T. B. Van de Walle (Ed.), Proceedings of ISCRAM 2006 – 3rd International Conference on Information Systems for Crisis Response and Management (pp. 450–459). Newark, NJ: Royal Flemish Academy of Belgium.
Abstract: Planning processes, including simulations and games, can help emergency workers to prepare for the unexpected. Rehearsal using software based gaming techniques not only helps planning, but is also cost effective. Computer-based groupware systems can make experts available regardless of location. A new approach, Virtual Simulation (VS), uses networking to create a flexible learning and planning environment. To date two prototype trials of this approach have been implemented at NJIT with major revamps between each one. This paper gives the results of the latest prototype trial, a simulation of attacks on university computer centers. The insights from this second prototype trial of virtual simulation will help us to improve the design and approach for future offerings.
|
|
|
Henrik Berndt, Daniel Wessel, Lennard Willer, Michael Herczeg, & Tilo Mentler. (2018). Immersion and Presence in Virtual Reality Training for Mass Casualty Incidents. In Kees Boersma, & Brian Tomaszeski (Eds.), ISCRAM 2018 Conference Proceedings – 15th International Conference on Information Systems for Crisis Response and Management (pp. 806–817). Rochester, NY (USA): Rochester Institute of Technology.
Abstract: Preparation for mass casualty incidents (MCIs) is highly important but difficult to accomplish. Incidents are rare, often complex, and training is costly. However, with the development of consumer grade virtual reality (VR) hardware, immersive training simulations have become affordable for competency training. To make simulations effective, users have to be immersed and feel present in the simulation. We have developed a VR training system for MCIs in a user centered design process with emergency personnel and further improved the system to increase immersion and presence. In an evaluation with eighteen paramedic trainees, we compare six hypothesized design improvements between the two simulations, such as using a menu or a simulated emergency bag for interaction. Results indicate clear user preferences of interaction styles related to immersion and presence in MCI VR simulations.
|
|
|
Josune Hernantes, Jose M. Torres, Ana Laugé, Jose Mari Sarriegi, Iztok Starc, Eva Zupancic, et al. (2010). Using GMB methodology on a large crisis model. In C. Zobel B. T. S. French (Ed.), ISCRAM 2010 – 7th International Conference on Information Systems for Crisis Response and Management: Defining Crisis Management 3.0, Proceedings. Seattle, WA: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: Mitigating, detecting, evaluating, responding and recovering from crises are highly complex tasks that involve many decision makers (agents). As a consequence using collaborative methods that allow the cooperation among these agents during the crisis management strategy and procedures design is of significant importance. Group Model Building (GMB) is a robust collaborative methodology that has been successfully used for modelling several complex socio-technical problems, where different agents may have diverse perspectives or interests in the problem under analysis. Through the development of a series of exercises, GMB allows the integration of these initially fragmented perspectives. Modellers translate the knowledge elicited from experts during GMB workshops into simulation models that reproduce the behaviour of the problem. This paper presents the use and adaptation of the GMB methodology in a research project about large pan European crises due to outages in the electricity sector.
|
|
|
Benjamin Heuer, Jan Zibuschka, Heiko Roßnagel, & Johannes Maucher. (2012). Empirical analysis of passenger trajectories within an urban transport hub. In Z.Franco J. R. L. Rothkrantz (Ed.), ISCRAM 2012 Conference Proceedings – 9th International Conference on Information Systems for Crisis Response and Management. Vancouver, BC: Simon Fraser University.
Abstract: In this contribution we present an analysis of passenger trajectories in an urban transportation hub. We collected an extensive amount of empirical data consisting of both gate and individual stalking observation in the central station of Cologne. Three different data mining algorithms are used to analyze this data, producing both data that may be used as input for simulation frameworks, and, as an aside, visualizations of passenger movements that could be of high interest to transport and emergency managers. © 2012 ISCRAM.
|
|
|
Cindy Hui, Mark Goldberg, Malik Magdon-Ismail, & William A. Wallace. (2008). Micro-simulation of diffusion of warnings. In B. V. de W. F. Fiedrich (Ed.), Proceedings of ISCRAM 2008 – 5th International Conference on Information Systems for Crisis Response and Management (pp. 424–430). Washington, DC: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: This paper presents a unique view of modeling the diffusion of warnings in social networks where the network structure may change over time. Since the characteristics and actions of people in a community have significant influence on the flow of information through a network, we present an axiomatic framework for modeling the diffusion process through the concept of trust. This ongoing work provides a micro level view of the behavior of individuals and groups in a community. Preliminary experiments were made to explore how model parameters such as trust and the social network structure affect warning message belief and evacuation.
|
|
|
Alicia Cabañas Ibañez, Dirk Schwanenberg, Luis Garrote De Marcos, Miguel Francés Mahamud, & Javier Arbaizar González. (2011). An example of Flood Forecasting and Decision-Support System for water management in Spain. In E. Portela L. S. M.A. Santos (Ed.), 8th International Conference on Information Systems for Crisis Response and Management: From Early-Warning Systems to Preparedness and Training, ISCRAM 2011. Lisbon: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: The paper provides an overview of past, present and future development in the program to implement a Flood Forecasting and Decision-Support System (DSS) for the SAIH network in some Spanish basins. These tools represent a significant advance by embedding the decision-making components for management of hydraulic infrastructure into the flood forecasting and flood early warning procedures. The DSS has been implemented based on an open-shell platform for integrating various data sources and different simulation models. So far, it covers the Segura, Jucar, Tajo, Duero and Miño-Sil basins, which represent 42% of Spanish territory. Special attention is paid to the decision-support for the operation of the 66 major reservoirs as a fundamental part of flood management.
|
|
|
Ilona Heldal, & Cecilia Hammar Wijkmark. (2017). Simulations and Serious Games for Firefighter Training: Users' Perspective. In eds Aurélie Montarnal Matthieu Lauras Chihab Hanachi F. B. Tina Comes (Ed.), Proceedings of the 14th International Conference on Informatin Systems for Crisis Response And Management (pp. 868–878). Albi, France: Iscram.
Abstract: Simulation and serious games (SSG) are advocated as promising technologies supporting training in emergency management (EM). Based on an investigation of SSG use for fire fighter training in nine countries, this paper is examining key elements and success factors that can counteract potential obstacles and challenges of SSG implementation. Data comes from interviews and observations with users and responsible managers from user organizations. By contrasting the different incentives and views regarding the SSG use, this paper contributes to a better understanding of SSG integration into organizational practices. Only by connecting the local, organizational strategies and user requirements with technical values and concrete examples can the SSG usage be experienced as successful. This connection requirement is by far not obvious since values are formulated differently by the main stakeholders and the benefits at one organization are not necessarily the same as at another. In this context, the added values of SSG solutions need to be more explicitly connected to the goals of traditional classroom and live training.
|
|
|
Ingo J. Timm, Bernhard Hess, & Fabian Lorig. (2019). Data Acquisition for ad-hoc Evacuation Simulations of Public Buildings. In Z. Franco, J. J. González, & J. H. Canós (Eds.), Proceedings of the 16th International Conference on Information Systems for Crisis Response And Management. Valencia, Spain: Iscram.
Abstract: Crowd simulation is suitable to evaluate evacuation strategies but its validity strongly depends on the quality of input
data. The acquisition of adequate input data is particularly challenging when simulating the evacuation of public
buildings such as universities. As they are publicly accessible, the exact number of persons on site is unknown.
Yet, to investigate specific emergency situations by means of simulation, e.g. amok or fire, information is required
about distribution and amount of people within the building at a specific point of time. Due to data privacy, public
buildings do not implement access control. However, data artifacts are available in various information systems,
e.g., wifi data, room administration. Our hypothesis is, that the acquisition and fusion of such data artifacts is
sufficient to enable data-based ad-hoc simulation of evacuation scenarios as decision support for the operations
management. To this end, we introduce a procedure for the situation-dependent collection fusion of simulation
input data. Furthermore, a case study is provided to demonstrate the feasibility of the approach.
|
|
|
James Hilton, & Nikhil Garg. (2023). Rapid Geospatial Processing for Hazard and Risk Management using the Geostack Framework. In V. L. Thomas J. Huggins (Ed.), Proceedings of the ISCRAM Asia Pacific Conference 2022 (pp. 2–7). Palmerston North, New Zealand: Massey Unversity.
Abstract: Operational predictive and risk modelling of landscape-scale hazards such as floods and fires requires rapid processing of geospatial data, fast model execution and efficient data delivery. However, geospatial data sets required for hazard prediction are usually large, in a variety of different formats and usually require a complex pre-processing toolchain. In this paper we present an overview of the Geostack framework, which has been specifically designed for this task using a newly developed software library. The platform aims to provide a unified interface for spatial and temporal data sets, deliver rapid processing through OpenCL and integrate with web APIs or external graphical user interface systems to display and deliver results. We provide examples of hazard and risk use cases, particularly Spark, a Geostack based system for predicting the spread of wildfires. The framework is open-source and freely available to end users and practitioners in the hazard and geospatial space.
|
|
|
Johan Jenvald, Michael Morin, Toomas Timpka, & Henrik Eriksson. (2007). Simulation as decision support in pandemic influenza preparedness and response. In K. Nieuwenhuis P. B. B. Van de Walle (Ed.), Intelligent Human Computer Systems for Crisis Response and Management, ISCRAM 2007 Academic Proceedings Papers (pp. 295–304). Delft: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: Outbreak of a destructive pandemic influenza threatens to disrupt societies worldwide. International agencies and national governments have prepared plans and recommendations, but it is often decision-makers with the local authorities that are responsible for implementing the response. A central issue for these decision makers is what interventions are available and effective for the specific local community. The paper presents a simulator architecture and its relation to a workflow for decision support in influenza preparedness and response. The simulator can simulate pandemic scenarios, using localized community models, in the presence of various interventions to support an evaluation of potential response strategies. The architecture includes a customized modeling tool, separated from the simulation engine, which facilitates swift scenario modification and recalculation. This flexibility is essential both to explore alternative solutions in planning, and to adapt to changing requirements, information, and resources in outbreak response. An example simulation, based on actual population data from a reference city, illustrates the approach.
|
|
|
Jo Erskine Hannay, & Yelte Kikke. (2019). Structured crisis training with mixed reality simulations. In Z. Franco, J. J. González, & J. H. Canós (Eds.), Proceedings of the 16th International Conference on Information Systems for Crisis Response And Management. Valencia, Spain: Iscram.
Abstract: We argue that current technology for crisis training does not explicitly cater well enough for managing training
objectives and skill building metrics throughout the lifespan of training. We suggest how successful crisis training
may be enabled by interoperating next-generation exercise management tools with mixed-reality simulations. We
propose an architecture consisting of (1) a front-end in which training objectives, essential skills, corresponding
events and metrics can be declared, (2) a back-end consisting of simulations that implement the events and metrics
and (3) a middleware which transfers information between the front-end and back-end to enable semi-automatic
composition of the simulations and performance analysis. The purpose of this architecture is to facilitate learning
through the principles of deliberate practice. We indicate where emerging technologies are necessary to achieve this.
|
|
|
João Porto de Albuquerque, Cidália C. Fonte, J.-P. de Almeida, & Alberto Cardoso. (2016). How Volunteered Geographic Information can be Integrated Into Emergency Management Practice? First Lessons Learned from an Urban Fire Simulation in the City of Coimbra. In A. Tapia, P. Antunes, V.A. Bañuls, K. Moore, & J. Porto (Eds.), ISCRAM 2016 Conference Proceedings ? 13th International Conference on Information Systems for Crisis Response and Management. Rio de Janeiro, Brasil: Federal University of Rio de Janeiro.
Abstract: In the past few years, volunteered geographic information (VGI) has emerged as a new resource for improving the management of emergencies. Despite the growing body of research dedicated to the use of VGI in crisis management, studies are still needed that systematically investigate the incorporation of VGI into practical emergency management. To fill this gap, this paper proposes a research design for investigating and planning the incorporation of VGI into work practices and decision-making of emergency agencies by means of simulation exercises. Furthermore, first lessons are drawn from a field study performed within a simulation exercise of an urban fire in Coimbra, Portugal, implemented together with local civil protection agents. Emergency management practitioners identified a high potential in the pictures taken in-situ by volunteers for improving situational awareness and supporting decision-making. They also pointed out to challenges associated to processing VGI and filtering high-value information in real-time.
|
|
|
Julian Zobel, Patrick Lieser, Tobias Meuser, Lars Baumgärtner, Mira Mezini, & Ralf Steinmetz. (2021). Modeling Civilian Mobility in Large-Scale Disasters. In Anouck Adrot, Rob Grace, Kathleen Moore, & Christopher W. Zobel (Eds.), ISCRAM 2021 Conference Proceedings – 18th International Conference on Information Systems for Crisis Response and Management (pp. 119–132). Blacksburg, VA (USA): Virginia Tech.
Abstract: When disasters destroy critical communication infrastructure, smartphone-based Delay-Tolerant Networks (DTNs) can provide basic communication for civilians. Although field tests have shown the practicability of such systems, real-world experiments are expensive and hardly repeatable. Simulations are therefore required for the design and extensive evaluation of novel DTN protocols, but meaningful assertions require realistic mobility models for civilians. In this paper, trace files from a large-scale disaster field test are analyzed to identify typical human behavior patterns in a disaster area. Based on this, we derive a novel civilian disaster mobility model that incorporates identified behaviors such as group-based movement and clustering around points-of-interests such as hospitals and shelters. We evaluate the impact of mobility on DTN communication performance by comparing our model with other established mobility models as well as the trace file dataset in a simulative evaluation based on the field test scenario. In general, our mobility model leads to a more realistic assessment of DTN communication performance compared to other mobility models.
|
|
|
Julian Zobel, Ralf Kundel, & Ralf Steinmetz. (2022). CAMON: Aerial-Ground Cooperation System for Disaster Network Detection. In Rob Grace, & Hossein Baharmand (Eds.), ISCRAM 2022 Conference Proceedings – 19th International Conference on Information Systems for Crisis Response and Management (pp. 87–101). Tarbes, France.
Abstract: Information on large-scale disaster areas, like the location of affected civilians, is highly valuable for disaster relief efforts. This information can be collected by an Aerial Monitoring System, using UAVs to detect smart mobile devices carried by civilians. State-of-the-art systems typically rely on a purely passive detection approach. In this paper, we present a cooperative communication system between UAVs and ground-based devices to improve the detection performance of such an Aerial Monitoring System. We provide different approaches for the cooperative information collection and evaluate them in a simulated inner-city scenario. The results highlight the effectiveness of the cooperative system, being able to detect civilian devices in the disaster area faster and more comprehensively than a non-cooperative approach.
|
|
|
Magnus Jändel, Sinna Lindquist, & Linus Luotsinen. (2013). Social coverage maps. In J. Geldermann and T. Müller S. Fortier F. F. T. Comes (Ed.), ISCRAM 2013 Conference Proceedings – 10th International Conference on Information Systems for Crisis Response and Management (pp. 241–250). KIT; Baden-Baden: Karlsruher Institut fur Technologie.
Abstract: This paper introduces Social Coverage Maps (SCM) as a visual representation of the societal impact of localized disruptions in urban areas. Incited by the recent deliberate interruption of wireless services for the purpose of crowd control in San Francisco, we focus on the use of SCMs for representing emergent effects of electronic warfare. As a prequel we discuss maps and other visualizations as representations of human behaviour and relations. The SCM concept is defined and grounded in simulation-based parameters. Using an experimental scenario based on cell phone jamming in a city we show how SCMs are generated using an agent-based population simulator. We find that Social Coverage Maps could become a useful tool for analysing emergent effects of actions and events including electronic warfare, roadblocks, smoke, teargas, chemical and radioactive contamination with applications in operational and emergency planning as well as crisis management.
|
|