|
Imane Benkhelifa, Samira Moussaoui, & Nadia Nouali-Taboudjemat. (2013). Locating emergency responders using mobile wireless sensor networks. In J. Geldermann and T. Müller S. Fortier F. F. T. Comes (Ed.), ISCRAM 2013 Conference Proceedings – 10th International Conference on Information Systems for Crisis Response and Management (pp. 432–441). KIT; Baden-Baden: Karlsruher Institut fur Technologie.
Abstract: Emergency response in disaster management using wireless sensor networks has recently become an interest of many researchers in the world. This interest comes from the growing number of disasters and crisis (natural or man-made) affecting millions of lives and the easy-use of new and cheap technologies. This paper details another application of WSN in the post disaster scenario and comes up with an algorithm for localization of sensors attached to mobile responders (firefighters, policemen, first aid agents, emergency nurses, etc) while assisted by a mobile vehicle (fire truck, police car, or aerial vehicle like helicopters) called mobile anchor, sent to supervise the rescue operation. This solution is very efficient and rapidly deployable since no pre-installed infrastructure is needed. Also, there is no need to equip each sensor with a GPS receiver which is very costly and may increase the sensor volume. The proposed technique is based on the prediction of the rescuers velocities and directions considering previous position estimations. The evaluation of our solution shows that our technique takes benefit from prediction in a more effective manner than previous solutions. The simulation results show that our algorithm outperforms conventional Monte Carlo localization schemes by decreasing estimation errors with more than 50%.
|
|
|
Valeriy Klenov. (2006). The moving digital earth (MDE) for monitoring of forthcoming disasters. In M. T. B. Van de Walle (Ed.), Proceedings of ISCRAM 2006 – 3rd International Conference on Information Systems for Crisis Response and Management (pp. 17–23). Newark, NJ: Royal Flemish Academy of Belgium.
Abstract: Disasters in Earth Nature Systems (in river basins and in coastal zone) are generated the systems by influence under pressure and impacts of external systems. The water related disasters include the most of hazardous processes on land and sea as follows: floods, avalanches, droughts, landslides, debris-flows, erosion, abrasion, and others. The external systems are not yet able to let know about the Time, Place, and Power of future disasters all together. However, Earth systems allow doing it because of their property to delay on exterior power. The proposed and discussed is the Moving Digital Earth (MDE) technology for outstripping estimation of the Earth Nature Systems response on exterior pressure and impacts. The MDE uses only the knowledge of current System's state and methods of the Digital Systems Analysis (DSA) by high-speed computing.
|
|
|
Volkmar Schau, Christian Erfurth, Gerald Eichler, Steffen Späthe, & Wilhelm Rossak. (2011). Geolocated communication support in rescue management. In E. Portela L. S. M.A. Santos (Ed.), 8th International Conference on Information Systems for Crisis Response and Management: From Early-Warning Systems to Preparedness and Training, ISCRAM 2011. Lisbon: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: Efficient communication on base of consistent and up to date information is the key factor to cope with hard rescue missions. With the new generation of mobile devices local peer-to-peer communication in conjunction with geolocated information is promising to improve information's quality. Thereby, the routing of information in ad-hoc networks is very dynamic. This contribution, based on work of the SpeedUp project, analyses protocols and presents an approach which combines mobile software agents, routing in ad-hoc networks, and geolocated information to build up a reliable communication infrastructure. The 2MANS simulator allows efficient graphical model building. Geolocated information will be utilized as a map representation to improve the overall situation for unified rescue forces management.
|
|
|
Rebecca Walton, Robin E. Mays, & Mark P. Haselkorn. (2011). Defining fast: Factors affecting the experience of speed in humanitarian logistics. In E. Portela L. S. M.A. Santos (Ed.), 8th International Conference on Information Systems for Crisis Response and Management: From Early-Warning Systems to Preparedness and Training, ISCRAM 2011. Lisbon: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: Speed is a central value for emergency logistics stakeholders. Emergency response literature makes a compelling case for rapid logistics processes to provide goods and services in humanitarian emergencies. However, speed is not well-defined concept. While situational demand contributes to the need for speed, an important factor is the perception of speed given the experience of the response stakeholders. Unfortunately, the literature lacks complex, situated pictures of how logistics stakeholders experience speed (i.e., what does it mean for a logistics process to be “fast”? What factors affect whether stakeholders perceive a logistics experience as fast?) To address this gap, we explored how logistics stakeholders in a large international humanitarian organization experience and perceive speed of operations. Our findings suggest that (1) the experience of speed is often comparative, not solely objective; (2) close communication between internal clients (field requestors) and service providers (logistics team) can make clients more likely to experience the logistics process as fast; and (3) feeling in control of decision-making can make both clients and service providers more likely to experience the logistics process as fast.
|
|