|
Henrik Artman, Joel Brynielsson, Björn J.E. Johansson, & Jiri Trnka. (2011). Dialogical emergency management and strategic awareness in emergency communication. In E. Portela L. S. M.A. Santos (Ed.), 8th International Conference on Information Systems for Crisis Response and Management: From Early-Warning Systems to Preparedness and Training, ISCRAM 2011. Lisbon: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: This paper introduces two concepts-dialogical emergency management and strategic awareness-as means to use and understand the content of social media for the purpose of emergency communication. Dialogical emergency management denotes that the emergency management organizations follow what people publish in various social media on emergencies and ongoing emergency response, and then adjust their information strategies in a way that matches the expectations and needs for emergency information of the public. The concept of strategic awareness suggests that it is essential to have an understanding of the receiver (public) of emergency information but also to have an understanding of the receivers' idea about the emergency and emergency response. Hence, the notion of strategic awareness incorporates structured awareness of how people interpret, value, and reacts on communication based on what they think about the sender's (emergency management organization's) actual intentions and motives.
|
|
|
Robert T. Brigantic, David S. Ebert, Courtney D. Corley, Ross Maciejewski, George A. Muller, & Aimee E. Taylor. (2010). Development of a quick look pandemic influenza modeling and visualization tool. In C. Zobel B. T. S. French (Ed.), ISCRAM 2010 – 7th International Conference on Information Systems for Crisis Response and Management: Defining Crisis Management 3.0, Proceedings. Seattle, WA: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: Federal, State, and local decision makers and public health officials must prepare and exercise complex plans to contend with a variety of possible mass casualty events, such as pandemic influenza. Through the provision of quick look tools (QLTs) focused on mass casualty events, such planning can be done with higher accuracy and more realism through the combination of interactive simulation and visualization in these tools. If an event happens, the QLTs can then be employed to rapidly assess and execute alternative mitigation strategies, and thereby minimize casualties. This can be achieved by conducting numerous “what-if” assessments prior to any event in order to assess potential health impacts (e.g., number of sick individuals), required community resources (e.g., vaccinations and hospital beds), and optimal mitigative decision strategies (e.g., school closures) during the course of a pandemic. In this presentation, we overview and demonstrate a pandemic influenza QLT, discuss some of the modeling methods and construct and visual analytic components and interface, and outline additional development concepts. These include the incorporation of a user selectable infectious disease palette, simultaneous visualization of decision alternatives, additional resource elements associated with emergency response (e.g., first responders and medical professionals), and provisions for other potential disaster events.
|
|
|
Lisa Fern, Stoney Trent, & Martin Voshell. (2008). A functional goal decomposition of urban firefighting. In B. V. de W. F. Fiedrich (Ed.), Proceedings of ISCRAM 2008 – 5th International Conference on Information Systems for Crisis Response and Management (pp. 305–314). Washington, DC: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: In this paper we describe a functional goal decomposition of urban firefighting as part of a larger cognitive task analysis. Previous research indicates that firefighter decision strategies employ a pattern-matching technique that allows them to choose the first workable option based on similar previous experiences. This study builds upon this research by employing multiple cognitive task analysis methods to further examine firefighter decisions through a functional goal decomposition. The functional goal decomposition outlines the functions, decisions and information requirements of firefighting in terms of two overarching goals-save lives and protect property. Information requirements provide useful insight into the difficulties of firefighter decision-making. Though still in the preliminary stages, this project has generated a number of design recommendations to support urban firefighting. Future analyses are also discussed.
|
|
|
Florian Brauner, Julia Maertens, Holger Bracker, Ompe Aimé Mudimu, & Alex Lechleuthner. (2015). Determination of the effectiveness of security measures for low probability but high consequence events: A comparison of multi-agent-simulation & process modelling by experts (L. Palen, M. Buscher, T. Comes, & A. Hughes, Eds.). Kristiansand, Norway: University of Agder (UiA).
Abstract: Due to the increasing danger of terrorist attacks, it is necessary to determine the preventive effects of security measures installed in e.g. public transportation systems. Since, there is no common practice to determine the preventive effects; we developed two different methodologies to analyse those effects, both are suitable for the assessment of security measures. The first method is a semi-quantitative method based on expert-estimations combined with a modelled process of an attack.The second method models the scenarios using a multi-agent-based simulation framework. Simulating a large number of runs, it is possible to derive values for indicators of interest on statistical basis. We show the suitability of both methods by applying them on a practical example of a public transportation system. In this paper we introduce both methodologies, show an exemplary application and present the strengths and weaknesses and how they can be linked to get an increased benefit.
|
|
|
Gonzalez, J. J., & Eden, C. (2023). Devising Mitigation Strategies With Stakeholders Against Systemic Risks in a Pandemic. In Jaziar Radianti, Ioannis Dokas, Nicolas Lalone, & Deepak Khazanchi (Eds.), Proceedings of the 20th International ISCRAM Conference (pp. 1000–1013). Omaha, USA: University of Nebraska at Omaha.
Abstract: Understanding and managing systemic risk has huge importance for disaster risk reduction in our globally connected world. The COVID-19 pandemic is a prominent case for the global impact of systemic risk. Did so the added urgency of the pandemic systemic risk trigger such paradigm shift? The use of qualitative modelling of systemic risk has progressed the field, particularly when policy makers need support urgently and want to utilize a range of interdisciplinary expertise. We have extended to disaster risk reduction a method for causal mapping for problem solving and strategy development targeting complex project management. Our approach delivers useful, useable, and used mitigation to systemic risk in a pandemic using participatory modelling with practitioners, domain experts and power-brokers.
|
|
|
Xiaofeng Hu, Shifei Shen, & Jiansong Wu. (2012). Modeling of attacking and defending strategies in situations with intentional threats. In Z.Franco J. R. L. Rothkrantz (Ed.), ISCRAM 2012 Conference Proceedings – 9th International Conference on Information Systems for Crisis Response and Management. Vancouver, BC: Simon Fraser University.
Abstract: Intentional threats including terrorism have become a worldwide catastrophe risk since recent years. To protect the cities from being attacked, the macro-level study of decision analysis should be given more considerations. In this paper, we proposed a model for describing the strategic game between attackers and defenders based on the methodology of matrix game. This model can be employed to determine which target will be selected by attackers and which attacking strategy and defending strategy will be chosen by attackers and defenders respectively. Furthermore, the defenders of the city can use this model to set priorities among their defending strategies. The importance of this work is to establish a reasonable framework for modeling the attacking and defending strategies rather than assessing the real risk of urban targets, so the model is illustrated by using fictitious numbers. The model proposed in this paper can provide scientific basis for macroscopic decision making in responding to intentional threats. © 2012 ISCRAM.
|
|
|
Lucia Castro Herrera. (2021). Configuring Social Media Listening Practices in Crisis Management. In Anouck Adrot, Rob Grace, Kathleen Moore, & Christopher W. Zobel (Eds.), ISCRAM 2021 Conference Proceedings – 18th International Conference on Information Systems for Crisis Response and Management (pp. 640–654). Blacksburg, VA (USA): Virginia Tech.
Abstract: Social media listening practices are increasingly adopted in crisis management and have become an object of interest for researchers and practitioners alike. This article analyzes how these enactments have been studied in the academic literature. Through a systematic review of the available body of knowledge, features from studies involving depictions of practice were extracted, analyzed, and turned into a narrative using an inductive approach. Strategies of improvisation, overreliance on personal and professional networks, manual work, spontaneous coordination, and re-assigning tasks represent the main findings in the multidisciplinary literature. This article is a consolidated overview of experiences from social media listening in practice beyond listing the benefits of social media as a source of information. Moreover, the paper sets the basis for future studies on the range of possible configurations and institutionalization of disruptive crisis management practices.
|
|
|
Thomas Münzberg, Marcus Wiens, & Frank Schultmann. (2014). A strategy evaluation framework based on dynamic vulnerability assessments. In and P.C. Shih. L. Plotnick M. S. P. S.R. Hiltz (Ed.), ISCRAM 2014 Conference Proceedings – 11th International Conference on Information Systems for Crisis Response and Management (pp. 45–54). University Park, PA: The Pennsylvania State University.
Abstract: Assessing a system's vulnerability is a widely used method to estimate the effects of risks. In the past years, increasingly dynamic vulnerability assessments were developed to display changes in vulnerability over time (e.g. in climate change, coastal vulnerability, and flood management). This implies that the dynamic influences of management strategies on vulnerability need to be considered in the selection and implementation of strategies. For this purpose, we present a strategy evaluation framework which is based on dynamic vulnerability assessments. The key contribution reported in this paper is an evaluation framework that considers how well strategies achieve a predefined target level of protection over time. Protection Target Levels are predefined objectives. The framework proposed is inspired by Goal Programming methods and allows distinguishing the relevance of time-dependent achievements by weights. This enables decision-makers to evaluate the overall performance of strategies, to test strategies, and to compare the outcome of strategies.
|
|
|
Tom Ritchey. (2006). Modeling multi-hazard disaster reduction strategies with computer-Aided morphological analysis. In M. T. B. Van de Walle (Ed.), Proceedings of ISCRAM 2006 – 3rd International Conference on Information Systems for Crisis Response and Management (pp. 339–346). Newark, NJ: Royal Flemish Academy of Belgium.
Abstract: Disaster Risk Management (DRM) is a multi-dimensional problem complex requiring knowledge and experience from a wide range of disciplines. It also requires a methodology which can collate and organize this knowledge in an effective, transparent manner. Towards this end, seven specialists from the social, natural and engineering sciences collaborated in a facilitated workshop in order to develop a prototype multi-hazard disaster reduction model. The model, developed with computer-Aided morphological analysis (MA), makes it possible to identify and compare risk reduction strategies, and preparedness and mitigation measures, for different types of hazards. Due to time constraints, the model is neither complete nor accurate-but only represents a proof-of-principle. The workshop was sponsored by the Earthquake Disaster Mitigation Research Center (EDM) in Kobe, in January, 2005.
|
|
|
Heiko Roßnagel, Jan Zibuschka, & Olaf Junker. (2011). On the effectiveness of mobile service notification for passenger egress during large public events. In E. Portela L. S. M.A. Santos (Ed.), 8th International Conference on Information Systems for Crisis Response and Management: From Early-Warning Systems to Preparedness and Training, ISCRAM 2011. Lisbon: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: In this contribution we evaluate the effectiveness of mobile services for passenger egress of a train station during a large public event using an agent-based simulation approach. For this simulation we built a virtual replica of the Cologne central train station and collected empirical data on passenger numbers and their movements during a large public event. We simulate several different scenarios and compare the results using key performance indicators, such as time for egress. Our results show that dedicated cell broadcast messages under the described circumstances can be used to decrease evacuation time significantly and that the simulation can be used to quickly investigate the relevant key performance indicators needed to asses and evaluate the effectiveness of different notification and evacuation strategies.
|
|
|
André Sabino, & Armanda Rodrigues. (2011). Understanding the role of cooperation in emergency plan construction. In E. Portela L. S. M.A. Santos (Ed.), 8th International Conference on Information Systems for Crisis Response and Management: From Early-Warning Systems to Preparedness and Training, ISCRAM 2011. Lisbon: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: In this paper we describe a proposal for information organization for computer supported cooperative work, while working with spatial information. It is focused on emergency response plan construction, and the requirements extracted from that task. At the centre of our proposal is the analysis of the structure of the cooperative workspace. We argue that the internal information representation should follow a spatial approach, tying the structure used to manage users with the structure used to manage information, suggesting the use of different spaces to represent the information. The gain we expect from this approach is the improved capacity to extract information on how people are cooperating and their relationship with the information they are working with. The ideas are introduced while focusing on real life emergency planning activities, where we discuss the current shortcomings of the cooperation strategies in use and propose a solution.
|
|
|
Adriaan Ter Mors, Xiaoyu Mao, Nicola Roos, Cees Witteveen, & Alfons H. Salden. (2007). Multi-agent system support for scheduling aircraft de-icing. In K. Nieuwenhuis P. B. B. Van de Walle (Ed.), Intelligent Human Computer Systems for Crisis Response and Management, ISCRAM 2007 Academic Proceedings Papers (pp. 467–478). Delft: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: Results from disaster research suggest that methods for coordination between individual emergency responders and organizations should recognize the independence and autonomy of these actors. These actor features are key factors in effective adaptation and improvisation of response to emergency situations which are inherently uncertain. Autonomy and adaptability are also well-known aspects of a multi-agent system (MAS). In this paper we present two MAS strategies that can effectively handle aircraft deicing incidents. These MAS strategies help improve to prevent and reduce e.g. airplane delays at deicing stations due to changing weather conditions or incidents at the station, where aircraft agents adopting pre-made plans that would act on behalf of aircraft pilots or companies, would only create havoc. Herein each agent using its own decision mechanism deliberates about the uncertainty in the problem domain and the preferences (or priorities) of the agents. Furthermore, taking both these issues into account each proposed MAS strategy outperforms a naive first-come, first-served coordination strategy. The simulation results help pilots and companies taking decisions with respect to the scheduling of the aircraft for deicing when unexpected incidents occur: they provide insights in the impacts and means for robust selection of incident-specific strategies on e.g. deicing station delays of (individual) aircraft.
|
|
|
Rene Windhouwer, Gerdien A. Klunder, & F.M. Sanders. (2005). Decision support system emergency planning, creating evacuation strategies in the event of flooding. In B. C. B. Van de Walle (Ed.), Proceedings of ISCRAM 2005 – 2nd International Conference on Information Systems for Crisis Response and Management (pp. 171–180). Brussels: Royal Flemish Academy of Belgium.
Abstract: The Decision Support System (DSS) Emergency Planning is designed for use in the event of sea or river flooding. It makes accessible all the information related to the decision whether to evacuate an area. An important factor in this decision is the time required for the evacuation. The model used by the DSS Emergency Planning system to estimate the time required employs a strategy that prevents congestion on the road network in the area at risk. The use of the DSS Emergency Planning system during the proactive and prevention phases enables disaster containment organisations to prepare better for a flood situation. Moreover, all relevant information is saved and is therefore available for the post-disaster evaluation. The DSS Emergency Planning system can play a significant role in ensuring that the evacuation of an area at risk goes according to plan. In the future the DSS Emergency Planning system can also be used to evacuate people in the event of a nuclear, natural fire or extreme weather disaster.
|
|
|
Xiaoyong Ni, Hong Huang, Shiwei Zhou, Boni Su, Jianchun Zheng, Wei Zhu, et al. (2018). Simulation of The Urban Waterlogging and Emergency Response Strategy at Subway Station's Entry-exit Platform in Heavy Rainstorm. In Kees Boersma, & Brian Tomaszeski (Eds.), ISCRAM 2018 Conference Proceedings – 15th International Conference on Information Systems for Crisis Response and Management (pp. 99–120). Rochester, NY (USA): Rochester Institute of Technology.
Abstract: Underground space like subway stations is prone to be flooded which can lead to severe and unpredictable damage and even threaten human lives. In this paper, four groups of contrastive simulation of urban waterlogging at two subway stations' entry-exit platforms in heavy rainstorm are conducted, and emergency response strategies are suggested. A waterlogging simulation method named UPFLOOD based on shallow water equations is proposed considering complex topography. It has been found that the waterlogging at subway station's entry-exit platforms is easily influenced by several factors and the site selection of the subway stations is very important. A disaster process construction method based on PN model is proposed and it has been found that the response strategies including plugging, drainage and evacuation are important for disaster mitigation. This study helps decision makers to response quickly to meet the emergency of the waterlogging disaster at subway stations caused by heavy rainstorm.
|
|