Dat T. Nguyen, Firoj Alam, Ferda Ofli, & Muhammad Imran. (2017). Automatic Image Filtering on Social Networks Using Deep Learning and Perceptual Hashing During Crises. In eds Aurélie Montarnal Matthieu Lauras Chihab Hanachi F. B. Tina Comes (Ed.), Proceedings of the 14th International Conference on Information Systems for Crisis Response And Management (pp. 499–511). Albi, France: Iscram.
Abstract: The extensive use of social media platforms, especially during disasters, creates unique opportunities for humanitarian organizations to gain situational awareness and launch relief operations accordingly. In addition to the textual content, people post overwhelming amounts of imagery data on social networks within minutes of a disaster hit. Studies point to the importance of this online imagery content for emergency response. Despite recent advances in the computer vision field, automatic processing of the crisis-related social media imagery data remains a challenging task. It is because a majority of which consists of redundant and irrelevant content. In this paper, we present an image processing pipeline that comprises de-duplication and relevancy filtering mechanisms to collect and filter social media image content in real-time during a crisis event. Results obtained from extensive experiments on real-world crisis datasets demonstrate the significance of the proposed pipeline for optimal utilization of both human and machine computing resources.
|
Firoj Alam, Ferda Ofli, Muhammad Imran, & Michael Aupetit. (2018). A Twitter Tale of Three Hurricanes: Harvey, Irma, and Maria. In Kees Boersma, & Brian Tomaszeski (Eds.), ISCRAM 2018 Conference Proceedings – 15th International Conference on Information Systems for Crisis Response and Management (pp. 553–572). Rochester, NY (USA): Rochester Institute of Technology.
Abstract: People increasingly use microblogging platforms such as Twitter during natural disasters and emergencies. Research studies have revealed the usefulness of the data available on Twitter for several disaster response tasks. However, making sense of social media data is a challenging task due to several reasons such as limitations of available tools to analyze high-volume and high-velocity data streams. This work presents an extensive multidimensional analysis of textual and multimedia content from millions of tweets shared on Twitter during the three disaster events. Specifically, we employ various Artificial Intelligence techniques from Natural Language Processing and Computer Vision fields, which exploit different machine learning algorithms to process the data generated during the disaster events. Our study reveals the distributions of various types of useful information that can inform crisis managers and responders as well as facilitate the development of future automated systems for disaster management.
|
Muhammad Imran, Shady Elbassuoni, Carlos Castillo, Fernando Díaz, & Patrick Meier. (2013). Extracting information nuggets from disaster- Related messages in social media. In J. Geldermann and T. Müller S. Fortier F. F. T. Comes (Ed.), ISCRAM 2013 Conference Proceedings – 10th International Conference on Information Systems for Crisis Response and Management (pp. 791–801). KIT; Baden-Baden: Karlsruher Institut fur Technologie.
Abstract: Microblogging sites such as Twitter can play a vital role in spreading information during “natural” or man-made disasters. But the volume and velocity of tweets posted during crises today tend to be extremely high, making it hard for disaster-affected communities and professional emergency responders to process the information in a timely manner. Furthermore, posts tend to vary highly in terms of their subjects and usefulness; from messages that are entirely off-topic or personal in nature, to messages containing critical information that augments situational awareness. Finding actionable information can accelerate disaster response and alleviate both property and human losses. In this paper, we describe automatic methods for extracting information from microblog posts. Specifically, we focus on extracting valuable “information nuggets”, brief, self-contained information items relevant to disaster response. Our methods leverage machine learning methods for classifying posts and information extraction. Our results, validated over one large disaster-related dataset, reveal that a careful design can yield an effective system, paving the way for more sophisticated data analysis and visualization systems.
|