|
Mifan Careem, David Bitner, & Ravindra De Silva. (2007). GIS integration in the Sahana disaster management system. In K. Nieuwenhuis P. B. B. Van de Walle (Ed.), Intelligent Human Computer Systems for Crisis Response and Management, ISCRAM 2007 Academic Proceedings Papers (pp. 211–218). Delft: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: Disaster Management often involves using Information and Communications Technology (ICT) to manage large amounts of data efficiently. Data gathered from disasters are often related to geographic locations, such as the affected geographic region, thus requiring special forms of data management software to utilize and manage them efficiently. Geographic Information Systems (GIS) are specialized database systems with software that can analyze and display data using digitized maps and tables for decision making. Preparing and correctly formatting data for use in a GIS is nontrivial, and it is even more challenging during disasters because of tight time constraints and inherent unpredictability of many natural disasters. This paper describes the important role of GIS in disaster management, and discusses the most common characteristics of GIS and their potential use in disaster response. We follow up with a detailed description of the GIS prototype in the Sahana Disaster Management System.
|
|
|
Murray Turoff, Connie White, Linda Plotnick, & Starr Roxanne Hiltz. (2008). Dynamic emergency response management for large scale decision making in extreme events. In B. V. de W. F. Fiedrich (Ed.), Proceedings of ISCRAM 2008 – 5th International Conference on Information Systems for Crisis Response and Management (pp. 462–470). Washington, DC: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: Effective management of a large-scale extreme event requires a system that can quickly adapt to changing needs of the users. There is a critical need for fast decision-making within the time constraints of an ongoing emergency. Extreme events are volatile, change rapidly, and can have unpredictable outcomes. Large, not predetermined groups of experts and decision makers need a system to prepare for a response to a situation never experienced before and to collaborate to respond to the actual event. Extreme events easily require a hundred or more independent agencies and organizations to be involved which usually results in two or more times the number of individuals. To accomplish the above objectives we present a philosophical view of decision support for Emergency Preparedness and Management that has not previously been made explicit in this domain and describe a number of the current research efforts at NJIT that fit into this framework.
|
|