|
Adam Widera, Sandra Lechtenberg, Gaby Gurczik, Sandra Bähr, & Bernd Hellingrath. (2017). Integrated Logistics and Transport Planning in Disaster Relief Operations. In eds Aurélie Montarnal Matthieu Lauras Chihab Hanachi F. B. Tina Comes (Ed.), Proceedings of the 14th International Conference on Information Systems for Crisis Response And Management (pp. 752–764). Albi, France: Iscram.
Abstract: Decision making in the area of humanitarian logistics and supply chain management often suffers because of the interrelations between planning horizons, tasks, and crisis management lifecycle phases. In this paper, we present a method, an exemplary prototypical implementation and its evaluation within a relief organization. Based on a structured literature analysis (a review of existing information systems as well as a consideration of ongoing research projects), basic requirements for an integrated logistics and transport planning approach were derived. Together with end-user involvement, these results were used to design and prototype a concept of an appropriate information system, which was applied and evaluated in a tabletop exercise. The generated results are promising in terms of having a positive impact on the logistics effectiveness. In combination with the identified limitations, our results promise to have an impact on future ISCRAM research.
|
|
|
Ahmed T. Elsergany, Amy L. Griffin, Paul Tranter, & Sameer Alam. (2014). Descriptive and Geographical Analysis of Flood Disaster Evacuation Modelling. In and P.C. Shih. L. Plotnick M. S. P. S.R. Hiltz (Ed.), ISCRAM 2014 Conference Proceedings ? 11th International Conference on Information Systems for Crisis Response and Management (pp. 55–59). University Park, PA: The Pennsylvania State University.
Abstract: The planning of evacuation operations for a riverine flood disaster is vital for minimizing their negative impacts on human lives. This paper aims to develop a systematic method to model and plan evacuation trip generation and distribution for riverine floods. To achieve this aim, it adapts the transportation or Hitchcock problem, an operations research technique employed in conventional four-stage transportation modeling, and that is used to plan and model transport in normal situations, so that it is appropriate for flood disaster situations focusing on the first two stages. Concentrating on pre-flood hazard planning, our evacuation modelling considers two types of flood disaster data environments: certain environs, in which all decision variables are known, and uncertain environs, when probabilities of decision variables are considered in the evacuation plans.
|
|