Aditya Irfansyah, Adam Widera, Mark Haselkorn, & Bernd Hellingrath. (2020). Current Trends and Future Challenges in Congestion Management. In Amanda Hughes, Fiona McNeill, & Christopher W. Zobel (Eds.), ISCRAM 2020 Conference Proceedings – 17th International Conference on Information Systems for Crisis Response and Management (pp. 622–636). Blacksburg, VA (USA): Virginia Tech.
Abstract: Traffic congestion creates multidimensional impacts that require stakeholders' integration and coordination. This paper tries to close the research gaps in congestion management by examining a case study of integrated solutions of congestion measures and analyzing future challenges in congestion management based on two selected factors. The authors develop the result from the literature study and an expert interview that provides a better perspective on the case study. The study generates a new perspective on reviewing the organizational aspect of integrated congestion management measures. Secondly, it starts a discussion on future challenges in congestion management and connects the domain of future mobility with congestion theories as an independent discussion.
|
Kpotissan Adjetey-Bahun, Babiga Birregah, Eric Châtelet, Jean-Luc Planchet, & Edgar Laurens-Fonseca. (2014). A simulation-based approach to quantifying resilience indicators in a mass transportation system. In and P.C. Shih. L. Plotnick M. S. P. S.R. Hiltz (Ed.), ISCRAM 2014 Conference Proceedings – 11th International Conference on Information Systems for Crisis Response and Management (pp. 75–79). University Park, PA: The Pennsylvania State University.
Abstract: A simulation-based model used to measure resilience indicators of the railway transportation system is presented. This model is tested through a perturbation scenario: the inoperability of a track which links two stations in the system. The performance of the system is modelled through two indicators: (a) the number of passengers that reach their destination and (b) the total delay of passengers after a serious perturbation. The number of passengers within a given station at a given time is considered as early warning in the model. Furthermore, a crisis management plan has been simulated for this perturbation scenario in order to help the system to recover quickly from this perturbation. This crisis management plan emphasizes the role and the importance of the proposed indicators when managing crises.
|
José H. Canós-Cerdá, Carmen Penadés, Carlos Solís, Marcos R. S. Borges, & Manuel Llavador. (2010). Using spatial hypertext to visualize composite knowledge in emergency responses. In C. Zobel B. T. S. French (Ed.), ISCRAM 2010 – 7th International Conference on Information Systems for Crisis Response and Management: Defining Crisis Management 3.0, Proceedings. Seattle, WA: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: Having the right information at the right time is crucial to make decisions during emergency responses. To fulfill this requirement, emergency management systems must provide emergency managers with knowledge management and visualization tools. The goal is twofold: on one hand, to organize knowledge coming from different sources, mainly the emergency response plans (the formal knowledge) and the information extracted from the emergency development (the contextual knowledge); on the other hand, to enable effective access to information. Formal and contextual knowledge sets are mostly disjoint; however, there are cases in which a formal knowledge piece may be updated with some contextual information, constituting what we call the composite knowledge. In this paper, we extend a knowledge framework with the notion of composite knowledge, and use spatial hypertext to visualize this type of knowledge. We illustrate our proposal with a case study on accessing to information during an emergency response in an underground transportation system.
|
Louise K. Comfort, Milos Hauskrecht, & Jeen-Shang Lin. (2008). Dynamic networks: Modeling change in environments exposed to risk. In B. V. de W. F. Fiedrich (Ed.), Proceedings of ISCRAM 2008 – 5th International Conference on Information Systems for Crisis Response and Management (pp. 576–585). Washington, DC: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: Modeling the interaction between interdependent systems in dynamic environments represents a promising approach to enabling communities to assess and manage the recurring risk to which they are exposed. We frame the problem as a complex, adaptive system, examining the interaction between transportation and emergency response as a socio-technical system. Using methods of spatial and statistical analysis, we overlaid the engineered transportation system on the organizational emergency response system to identify the thresholds of fragility in each. We present a research design and preliminary results from a small-scale study conducted in the Pittsburgh Metropolitan Region that examined the interaction between the transportation and emergency response systems. These results informed the design of a Situational Assessment Module for emergency managers, currently under development at the University of Pittsburgh.
|