Anne Marie Barthe, Matthieu Lauras, & Frédérick Benaben. (2011). Improving the design of interoperable platform through a structured case study description approach: Application to a nuclear crisis. In E. Portela L. S. M.A. Santos (Ed.), 8th International Conference on Information Systems for Crisis Response and Management: From Early-Warning Systems to Preparedness and Training, ISCRAM 2011. Lisbon: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: In this article, we briefly describe a crisis management case that has been chosen (in the European funded project PLAY) to test the federated-open-trusted platform for event-driven interaction between services. A description of such complex use case in natural language is obviously limited and should be completed with a formal description methodology to gather the necessary knowledge. Considering our technical requirements we suggest to combine the S-Cube approach with the model driven architecture approach to propose a complete and structured case study description framework. Then this article presents a nuclear crisis case modeled according to these guidelines.
|
Philippe Kruchten, Carson Woo, Kafui Monu, & Mandana Sotoodeh. (2007). A human-centered conceptual model of disasters affecting critical infrastructures. In K. Nieuwenhuis P. B. B. Van de Walle (Ed.), Intelligent Human Computer Systems for Crisis Response and Management, ISCRAM 2007 Academic Proceedings Papers (pp. 327–344). Delft: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: Understanding the interdependencies of critical infrastructures (power, transport, communication, etc.) is essential in emergency preparedness and response in the face of disasters. Unfortunately, many factors (e.g., unwillingness to disclose or share critical data) prohibited the complete development of such an understanding. As an alternative solution, this paper presents a conceptual model-an ontology-of disasters affecting critical infrastructures. We bring humans into the loop and distinguish between the physical and social interdependencies between infrastructures, where the social layer deals with communication and coordination among representatives (either humans or intelligent agents) from the various critical infrastructures. We validated our conceptual model with people from several different critical infrastructures responsible for disasters management. We expect that this conceptual model can later be used by them as a common language to communicate, analyze, and simulate their interdependencies without having to disclose all critical and confidential data. We also derived tools from it.
|
Johannes Sautter, Sebastian Kurowski, Heiko Roßnagel, Wolf Engelbach, & Jan Zibuschka. (2012). Interoperability for information systems in public urban transport security: The SECUR-ED interoperability notation. In Z.Franco J. R. L. Rothkrantz (Ed.), ISCRAM 2012 Conference Proceedings – 9th International Conference on Information Systems for Crisis Response and Management. Vancouver, BC: Simon Fraser University.
Abstract: In public transport and at large urban hubs, such as metro or train stations, transport operators and first responders collaborate in the prevention of and reaction to security issues. Within the EU demonstration project SECUR-ED a specific notation for interoperability of information systems in the domain of public transport security was developed. (In this context, the interoperability of actual operating systems is not the focus.) Based on UML (Unified Modelling Language), the notation language offers the possibility for structured modelling of system-of-systems architectures. Four interoperability object templates and their interdependencies form the underlying basis. Domain-specific annotation rules and guidelines for interoperability objects and their sub-component structures allow collaboration and interpretation of this model on various granularities and stages during a systems engineering process. © 2012 ISCRAM.
|
Yasas Senarath, Jennifer Chan, Hemant Purohit, & Ozlem Uzuner. (2021). Evaluating the Relevance of UMLS Knowledge Base for Public Health Informatics during Disasters. In Anouck Adrot, Rob Grace, Kathleen Moore, & Christopher W. Zobel (Eds.), ISCRAM 2021 Conference Proceedings – 18th International Conference on Information Systems for Crisis Response and Management (pp. 97–105). Blacksburg, VA (USA): Virginia Tech.
Abstract: During disasters public health organizations increasingly face challenges in acquiring and transforming real-time data into knowledge about the dynamic public health needs. Resources on the internet can provide valuable information for extracting knowledge that can help improve decisions which will ultimately result in targeted and efficient health services. Digital content such as online articles, blogs, and social media are some of such information sources that could be leveraged to improve the health care systems during disasters. To efficiently and accurately identify relevant disaster health information, extraction tools require a common vocabulary that is aligned to the health domain so that the knowledge from these unstructured digital sources can be accurately structured and organized. In this paper, we study the degree to which the Unified Medical Language System (UMLS) contains relevant disaster, public health, and medical concepts for which public health information in disaster domain could be extracted from digital sources.
|