Aarland, M., Radianti, J., & Gjøsæter, T. (2023). Using System Dynamics to Simulate Trust in Digital Supply Chains. In Jaziar Radianti, Ioannis Dokas, Nicolas Lalone, & Deepak Khazanchi (Eds.), Proceedings of the 20th International ISCRAM Conference (pp. 516–529). Omaha, USA: University of Nebraska at Omaha.
Abstract: The power industry is outsourcing and digitalising their services to provide better, faster, and more reliable supply of electric power to the society. As a result, critical infrastructure increases in complexity and tight couplings between multiple suppliers and systems in digital supply chains. It also introduces new risks and challenges that are difficult to manage for critical infrastructure owners. To address the vulnerability in digital supply chains, we have developed a system dynamics model that represent important challenges to manage cybersecurity in digital supply chains, based on input from an expert group in the power industry. The system dynamics model illustrates how trust in suppliers as well as the need for control play important roles in outsourcing. Scenarios were developed and simulated.
|
Abdelgawad, A. A. (2023). An Updated System Dynamics Model for Analysing the Cascading Effects of Critical Infrastructure Failures. In Jaziar Radianti, Ioannis Dokas, Nicolas Lalone, & Deepak Khazanchi (Eds.), Proceedings of the 20th International ISCRAM Conference (pp. 595–608). Omaha, USA: University of Nebraska at Omaha.
Abstract: Aiming at examining the cascading effects of the failure of Critical Infrastructure (CI), this work-in-progress research introduces an improved System Dynamics model. We represent an improvement over the previous models aimed at studying CIs interdependencies and their cascading effects. Our model builds on earlier models and corrects their flaws. In addition to introducing structural enhancements, the improvements include using unpublished data, a fresh look at a previously collected dataset and employing a new data processing to address and resolve some longstanding issues. The dataset was fed to an optimisation model to produce a new dataset used in our model. The structure of our SD model, its dataset and the data processing techniques we employed to create this dataset are all described in the study. Although the model has passed the fundamental validation criteria, more validation testing and scenario exploration are yet to be conducted.
|
Alexander Gabriel, Florian Klein, & Frank Fiedrich. (2020). Modelling of Passenger Handling Processes in Railway Stations – A Mixed-Methods Approach. In Amanda Hughes, Fiona McNeill, & Christopher W. Zobel (Eds.), ISCRAM 2020 Conference Proceedings – 17th International Conference on Information Systems for Crisis Response and Management (pp. 580–592). Blacksburg, VA (USA): Virginia Tech.
Abstract: The constantly increasing number of passengers using public transportation leads to an expansion of the ser-vices offered by public transportation companies. The existing transportation infrastructures, especially rail-way stations, can only partly cope with this rapid growth. There is already overcrowding on platforms and access routes, especially during disruptions caused by natural disasters or major public events. This crowding may result in personal injury or shutdown of operations for safety reasons. The research project CroMa aims at improving robustness, safety, security and performance of railway stations at peak loads. The paper contributes thereto by developing an approach to assess railway infrastructure in terms of the risk of overcrowding. The core of this research is to combine qualitative workshop results with quantitative database analysis. Furthermore, the paper gives an outlook on the ongoing process model development as a basis for a semi-quantitative evaluation tool for railway stations applicable by end users.
|
Alexander Gabriel, Simon Schleiner, Florian Brauner, Florian Steyer, Verena Gellenbeck, & Ompe Aimé Mudimu. (2017). Process modelling of physical and cyber terrorist attacks on networks of public transportation infrastructure. In eds Aurélie Montarnal Matthieu Lauras Chihab Hanachi F. B. Tina Comes (Ed.), Proceedings of the 14th International Conference on Information Systems for Crisis Response And Management (pp. 390–399). Albi, France: Iscram.
Abstract: Recent events have demonstrated the vulnerability of IT-systems of different companies, organisations or even governments to hacker attacks. Simultaneously, information technologies have become increasingly established and important for institutions of various branches. With respect to modern terrorism developments, cyber-attacks may be used to physically harm critical infrastructures. This leads to a new dimension of cyber-attacks called “terrorist cyber-attacks”. This research-in-progress paper aims to develop a process model for data acquisition and support of decision making that seeks to enhance the security of public transportation in the context of counterterrorism. Therefore, a generic process model for terrorist cyber-attacks – produced in the research project RE(H)STRAIN1 – is intro-duced as a basis for a decision support system (DSS). In the future, such models could improve the decision process by comparing the effectiveness of different security measures.
|
Ana Rodríguez-Hoyos, José Estrada-Jiménez, David Rebollo-Monedero, Jordi Forné, Rubén Trapero Burgos, Antonio Álvarez Romero, et al. (2019). Anonymizing Cybersecurity Data in Critical Infrastructures: The CIPSEC Approach. In Z. Franco, J. J. González, & J. H. Canós (Eds.), Proceedings of the 16th International Conference on Information Systems for Crisis Response And Management. Valencia, Spain: Iscram.
Abstract: Cybersecurity logs are permanently generated by network devices to describe security incidents. With modern
computing technology, such logs can be exploited to counter threats in real time or before they gain a foothold.
To improve these capabilities, logs are usually shared with external entities. However, since cybersecurity logs
might contain sensitive data, serious privacy concerns arise, even more when critical infrastructures (CI), handling
strategic data, are involved.
We propose a tool to protect privacy by anonymizing sensitive data included in cybersecurity logs. We implement
anonymization mechanisms grouped through the definition of a privacy policy. We adapt said approach to the
context of the EU project CIPSEC that builds a unified security framework to orchestrate security products, thus
offering better protection to a group of CIs. Since this framework collects and processes security-related data from
multiple devices of CIs, our work is devoted to protecting privacy by integrating our anonymization approach.
|
Axel Dierich, Katerina Tzavella, Neysa Jacqueline Setiadi, Alexander Fekete, & Florian Neisser. (2019). Enhanced Crisis-Preparation of Critical Infrastructures through a Participatory Qualitative-Quantitative Interdependency Analysis Approach. In Z. Franco, J. J. González, & J. H. Canós (Eds.), Proceedings of the 16th International Conference on Information Systems for Crisis Response And Management. Valencia, Spain: Iscram.
Abstract: Critical Infrastructure (CI) failures are aggravated by cascading effects due to interdependencies between
different infrastructure systems and with emergency management. Findings of the German, BMBF-funded
research project ?CIRMin? highlight needs for concrete assessments of such interdependencies. Driven by
challenges of limited data and knowledge accessibility, the developed approach integrates qualitative
information from expert interviews and discussions with quantitative, place-based analyses in three selected
German cities and an adjacent county.
This paper particularly discusses how the mixed methods approach has been operationalized. Based on
anonymized findings, it provides a comprehensive guidance to interdependency analysis, from survey and
categorization of system elements and interrelations, their possible mutual impacts, to zooming into selected
dependencies through GIS mapping. This facilitates reliably assessing the need for maintenance of critical
functionalities in crisis situations, available resources, auxiliary powers, and optimization of response time.
|
Marie Bartels. (2014). Communicating probability: A challenge for decision support systems. In and P.C. Shih. L. Plotnick M. S. P. S.R. Hiltz (Ed.), ISCRAM 2014 Conference Proceedings – 11th International Conference on Information Systems for Crisis Response and Management (pp. 260–264). University Park, PA: The Pennsylvania State University.
Abstract: This paper presents observations made in the course of two interorganizational crisis management exercises that were conducted in order to identify requirements for a decision support system for critical infrastructure operators. It brings into focus how different actors deal with the uncertainty of information that is relevant for other stakeholders and therefore is to be shared with them. It was analyzed how the participants articulated und comprehended assessments on how probable the reliability of a given data or prognosis was. The recipients of the information had to consider it when making decisions concerning their own network. Therefore they had to evaluate its reliability. Different strategies emerged.
|
Benjamin Herfort, Melanie Eckle, João Porto de Albuquerque, & Alexander Zipf. (2015). Towards assessing the quality of volunteered geographic information from OpenStreetMap for identifying critical infrastructures. In L. Palen, M. Buscher, T. Comes, & A. Hughes (Eds.), ISCRAM 2015 Conference Proceedings ? 12th International Conference on Information Systems for Crisis Response and Management. Kristiansand, Norway: University of Agder (UiA).
Abstract: Identifying the assets of a community that are part of its Critical Infrastructure (CI) is a crucial task in emergency planning. However, this task can prove very challenging due to the costs involved in defining the methodology and gathering the necessary data. Volunteered Geographic Information from collaborative maps such as OpenStreetMap (OSM) may be able to make a contribution in this context, since it contains valuable local knowledge. However, research is still due to assess the quality of OSM for the particular purpose of identifying critical assets. To fill this gap, this paper proposes a catalogue of critical asset types, based on the analysis of different reference frameworks. We thus analyze how good the emergent OSM data model is for representing these asset types, by verifying whether they can be mapped to tags used by the OSM community. Results show that critical asset types of all selected sectors and branches are well represented in OSM.
|
Björn Johan Erik Johansson, Amanda Jaber, Joeri van Laere, & Peter Berggren. (2018). The lack of preparedness for payment disruptions in local community core businesses. In Kees Boersma, & Brian Tomaszeski (Eds.), ISCRAM 2018 Conference Proceedings – 15th International Conference on Information Systems for Crisis Response and Management (pp. 904–913). Rochester, NY (USA): Rochester Institute of Technology.
Abstract: One of the most important infrastructures for society is the payment system. If this system malfunctions, it can lead to disruptions in other critical infrastructures. By developing resilience i.e. the ability to recover or resist different disruptions in complex dynamic systems, as well as analyzing and raising awareness about it, such events can hopefully be handled better. The purpose of this study is to gain an insight into the different sectors' ways of dealing with disturbances in the payment system. Six participants from the food, fuel and bank sectors were interviewed using semi-structured questions. The interviews were conducted and data was analyzed using a thematic analysis approach. The results indicate a low level of resilience maturity among these organizations when it comes to handle long-term disruptions in the payment systems. The results provide valuable input to the project and a better understanding of payment infrastructure resilience.
|
Boris Petrenj, & Paolo Trucco. (2021). Blockchain-based Solutions to support inter-organisational Critical Infrastructure Resilience. In Anouck Adrot, Rob Grace, Kathleen Moore, & Christopher W. Zobel (Eds.), ISCRAM 2021 Conference Proceedings – 18th International Conference on Information Systems for Crisis Response and Management (pp. 982–993). Blacksburg, VA (USA): Virginia Tech.
Abstract: This conceptual paper critically discusses opportunities for and challenges to the development and exploitation of blockchain-based solutions for resilience management at inter-organizational level of interdependent Critical Infrastructure (CI) systems. The main premise behind this idea is that trustful information-sharing and inter-institutional collaboration are the key elements of government and private sector efforts to build CI resilience (CIR). The discussion presents a vision that the adoption and adaptation of Blockchain Technology (BCT) could significantly improve the way a network of stakeholders prepares for and performs in face of inevitable CI disruptions. Even though BCT is regarded as technological innovation, the impacts go far beyond information systems. BCT application in this domain would entail significant benefits to organizational, managerial, legal and social issues, but would require adequate operational and organizational changes. We discuss how interdisciplinary approach (BCT and CIR) could address existing challenges, how it could introduce new challenges and how it could support other approaches and paradigms currently being regarded as the future of risk and resilience management. Even though the discussion in this paper is focused on Critical Infrastructure resilience, each point also applies to Crisis/Disaster management domain in general. This is a preliminary overview with the aim to stimulate further discussions and point to possible new, disruptive and interdisciplinary research avenues. To this end, a possible research agenda is eventually proposed.
|
Boris Petrenj, Mariachiara Piraina, Giada Feletti, Paolo Trucco, Valentina Urbano, & Stefano Gelmi. (2021). Cross-border Information Sharing for Critical Infrastructure Resilience: Requirements and Platform Architecture. In Anouck Adrot, Rob Grace, Kathleen Moore, & Christopher W. Zobel (Eds.), ISCRAM 2021 Conference Proceedings – 18th International Conference on Information Systems for Crisis Response and Management (pp. 247–259). Blacksburg, VA (USA): Virginia Tech.
Abstract: Resilience of Critical Infrastructures is high on the agenda of countries' efforts. Modern CI highly interdependent and span countries, so disruptions occurring on one side of the border can significantly affect economic and social functions on the other. To build CI resilience, stakeholder organizations must collaborate and exchange information throughout the Emergency Management cycle. In this paper, we present the Critical Infrastructure Platform (PIC in Italian) which is being developed within the SICt project (Resilience of Cross-Border Critical Infrastructure). PIC is a technological piece of a broader cross-border regional resilience strategy between Lombardy Region (Italy) and Canton Ticino (Switzerland) aiming to improve the capacity to manage accidental events involving transportation CI between the two countries. The main goal of the PIC platform is to support secure and effective information-sharing, inter-organizational risk assessment, monitoring and operational coordination under critical situations. The paper presents the key requirements of such ICT system, its high-level architecture including the description of its main modules, main takeaways and future steps.
|
Raffaele Bruno, Marco Conti, & Andrea Passarella. (2008). Opportunistic networking overlays for ICT services in crisis management. In B. V. de W. F. Fiedrich (Ed.), Proceedings of ISCRAM 2008 – 5th International Conference on Information Systems for Crisis Response and Management (pp. 689–701). Washington, DC: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: ICT infrastructures are a critical asset in today's Information society. Legacy telecommunication systems easily collapse in the face of disruptions due to security incidents or natural disasters. Hence, there is an urgent demand for new architectures and technologies ensuring a more efficient and dependable support for various security missions, such as disaster relief initiatives, first responder operations, critical infrastructure protection, etc. In this paper we advocate the opportunistic networking paradigm to build a self-organizing overlay ICT infrastructure for supporting dependable crisis management services. Our opportunistic framework to “glues together” surviving parts of the pre-existing infrastructure with networks deployed on-demand and users devices, and supports dependable distribution of coherent, updated, and non-contradictory information distribution. Finally, to show the potential advantages of our solution, we present initial results on the performance of different types of opportunistic infrastructures, by particularly highlighting the gains of context-aware systems.
|
Madhavi M. Chakrabarty, & David Mendonça. (2005). Design considerations for information systems to support critical infrastructure management. In B. C. B. Van de Walle (Ed.), Proceedings of ISCRAM 2005 – 2nd International Conference on Information Systems for Crisis Response and Management (pp. 13–18). Brussels: Royal Flemish Academy of Belgium.
Abstract: This paper develops a set of design considerations for information systems to support the management of interdependent critical infrastructure systems. Constraints on how these systems are managed are oriented along technical, political and organizational dimensions, though objectives along these dimensions may conflict and thus be difficult to satisfy. This paper harnesses methodologies from software engineering and cognitive science in order to specify opportunities for using information systems to support human-centered management of critical infrastructure systems. The particular focus of this work is on developing information systems to support visualization and visual problem solving. Progress to date is discussed in terms of an ongoing research project which uses as a test-bed data associated with lower Manhattan (New York, USA).
|
Christopher W. Zobel, Milad Baghersad, & Yang Zhang. (2017). Calling 311: evaluating the performance of municipal services after disasters. In eds Aurélie Montarnal Matthieu Lauras Chihab Hanachi F. B. Tina Comes (Ed.), Proceedings of the 14th International Conference on Information Systems for Crisis Response And Management (pp. 164–172). Albi, France: Iscram.
Abstract: As part of a movement towards enabling smart cities, a growing number of urban areas in the USA, such as New York City, Boston, and Houston, have established 311 call centers to receive service requests from their citizens through a variety of platforms. In this paper, for the first time, we propose to leverage the large amount of data provided by these non-emergency service centers to help characterize their operational performance in the context of a natural disaster event. We subsequently develop a metric based on the number of open service requests, which can serve as the basis for comparing the relative performance of different departments across different disasters and in different geographic locations within a given urban area. We then test the applicability and usefulness of the approach using service request data collected from New York City's 311 service center.
|
Tina Comes, & Bartel A. Van De Walle. (2014). Measuring disaster resilience: The impact of hurricane sandy on critical infrastructure systems. In and P.C. Shih. L. Plotnick M. S. P. S.R. Hiltz (Ed.), ISCRAM 2014 Conference Proceedings – 11th International Conference on Information Systems for Crisis Response and Management (pp. 195–204). University Park, PA: The Pennsylvania State University.
Abstract: Modern critical infrastructure (CI) systems are tightly coupled, resulting in unprecedented complexity and difficulty to predict, limit and control the consequences of disruptions caused by hazards. Therefore, a paradigm shift in disaster risk management is needed: instead of focusing on predicting events, resilience needs to be improved as a basis for adequate response to any event. This paper starts from a definition of CI resilience that provides a basis for quantitative and qualitative decision support. For the quantitative modelling approach, which aims at measuring the resilience of individual CIs, we focus on two CIs of fundamental importance for disaster response: transportation and power supply. The qualitative framework details relations between CIs. The results of this research are illustrated by a case study that analyses the impact of Hurricane Sandy. The findings highlight the need for a framework that combines qualitative and quantitative information from heterogeneous sources to improve disaster resilience.
|
Tina Comes, Valentin Bertsch, & Simon French. (2013). Designing dynamic stress tests for improved critical infrastructure resilience. In J. Geldermann and T. Müller S. Fortier F. F. T. Comes (Ed.), ISCRAM 2013 Conference Proceedings – 10th International Conference on Information Systems for Crisis Response and Management (pp. 307–311). KIT; Baden-Baden: Karlsruher Institut fur Technologie.
Abstract: This paper outlines an approach to support decision-makers in designing resilient critical infrastructure (CI) networks. As CIs have become increasingly interdependent disruptions can have far-reaching impacts. We focus on the vulnerability of CIs and the socio-economic systems, in which they are embedded, independent from any initial risk event. To determine which disruptions are the most severe and must be avoided, quantitative and qualitative assessments of a disruption's consequences and the perspectives of multiple stakeholders need to be integrated. To this end, we combine the results of consequence models and expert assessments into stress test scenarios, which are evaluated using multi-criteria decision analysis techniques. This approach enables dynamic adaption of the stress tests in the face of a fast changing environment and to take account of better information about interdependencies or changing preferences. This approach helps make trade-offs between costs for resilient CIs and potential losses of disruptions clearly apparent.
|
Debora Robles Perez, Manuel Esteve Domingo, Israel Perez Llopis, & Federico J. Carvajal Rodrigo. (2020). System and Architecture of an Adapted Situation Awareness Tool for First Responders. In Amanda Hughes, Fiona McNeill, & Christopher W. Zobel (Eds.), ISCRAM 2020 Conference Proceedings – 17th International Conference on Information Systems for Crisis Response and Management (pp. 928–936). Blacksburg, VA (USA): Virginia Tech.
Abstract: First responders (FRs) in Europe are currently facing large natural and man-made disasters (e.g. wild fire, terrorist attacks, industrial incidents, big floods, gas leaks etc.), that put their own lives and those of thousands of others at risk. Adapted situation awareneSS tools and taIlored training curricula for increaSing capabiliTies and enhANcing the proteCtion of first respondErs (ASSISTANCE) is an ongoing European H2020 project which main objective is to increase FRs Situation Awareness (SA) for helping and protecting different kinds of FRs' organizations that work together in large scale disasters mitigation. ASSISTANCE will enhance the SA of the FRs organisations during their mitigation activities through the integration of new paradigms, tools and technologies (e.g. drones/robots equipped with a range of sensors, robust communications capabilities, etc.) with the main objective of increasing both their protection and their efficiency.
|
Elisa Canzani. (2016). Modeling Dynamics of Disruptive Events for Impact Analysis in Networked Critical Infrastructures. In A. Tapia, P. Antunes, V.A. Bañuls, K. Moore, & J. Porto (Eds.), ISCRAM 2016 Conference Proceedings ? 13th International Conference on Information Systems for Crisis Response and Management. Rio de Janeiro, Brasil: Federal University of Rio de Janeiro.
Abstract: Governments have strongly recognized that the proper functioning of critical infrastructures (CIs) highly determines the societal welfare. If a failed infrastructure is unable to deliver services and products to the others, disruptive effects can cascade into the larger system of CIs. In turn, decision-makers need to understand causal interdependencies and nonlinear feedback behaviors underlying the entire CIs network toward more effective crisis response plans. This paper proposes a novel block building modeling approach based on System Dynamics (SD) to capture complex dynamics of CIs disruptions. We develop a SD model and apply it to hypothetical scenarios for simulation-based impact analysis of single and multiple disruptive events. With a special focus on temporal aspects of system resilience, we also demonstrate how the model can be used for dynamic resilience assessment. The model supports crisis managers in understanding scenarios of disruptions and forecasting their impacts to improve strategic planning in Critical Infrastructure Protection (CIP).
|
Franclin Foping, & Ioannis M. Dokas. (2013). A saas-based early warning information fusion system for critical infrastructure safety. In J. Geldermann and T. Müller S. Fortier F. F. T. Comes (Ed.), ISCRAM 2013 Conference Proceedings – 10th International Conference on Information Systems for Crisis Response and Management (pp. 156–165). KIT; Baden-Baden: Karlsruher Institut fur Technologie.
Abstract: Maintaining the critical infrastructures, such as Drinking Water Treatment Plants (DWTP), transportation, power generation and communications systems, in a safe state is a complex problem. The effective collaboration, as well as the collection aggregation and dissemination of early warning information among the stakeholders of the Safety Management System (SMS) responsible for the safety of these critical infrastructures are some of the challenges that need to be addressed. This paper argues that the Software as a Service (SaaS) deployment model can offer new ways of enhancing the fusion of early warning information during the operation phase of critical infrastructures. It presents the requirements, the architecture and a number of features of a working prototype SaaS-based early warning information fusion system for DWTP safety issues in the Republic of Ireland. It is the first time that a SaaSbased working prototype system is reported of providing early warning information fusion services in the literature.
|
Joaquín López-Silva, Victor A. Bañuls, & Murray Turoff. (2015). Scenario Based Approach for Risks Analysis in Critical Infrastructures. In L. Palen, M. Buscher, T. Comes, & A. Hughes (Eds.), ISCRAM 2015 Conference Proceedings ? 12th International Conference on Information Systems for Crisis Response and Management. Kristiansand, Norway: University of Agder (UiA).
Abstract: This paper proposes a Cross Impact Analysis for supporting critical infrastructures risk analysis. This methodology contributes to decision-makers and planners with analytical tools for modeling complex situations. These features are generally useful in emergency management and particularly within the critical infrastructures scope, where complex scenarios for risk analysis and emergency plans design have to be analyzed. This paper will show by an example how CIA methodology can be applied for risks and identification analysis with an application to a Data Centre of a Critical Infrastructure.
|
Joeri van Laere, Peter Berggren, Per Gustavsson, Osama Ibrahim, Björn Johansson, Aron Larsson, et al. (2017). Challenges for critical infrastructure resilience: cascading effects of payment system disruptions. In eds Aurélie Montarnal Matthieu Lauras Chihab Hanachi F. B. Tina Comes (Ed.), Proceedings of the 14th International Conference on Information Systems for Crisis Response And Management (pp. 281–292). Albi, France: Iscram.
Abstract: Critical infrastructures become more and more entangled and rely extensively on information technology. A deeper insight into the relationships between critical infrastructures enables the actors involved to more quickly understand the severity of information technology disruptions and to identify robust cross-functional mitigating actions. This study illustrates how and why disruptions in the payment system in Sweden could create cascading effects in other critical infrastructures with potentially severe consequences for many citizens, government institutions and companies. Data from document studies, interviews and workshops with field experts reveal seven challenges for collective cross-functional critical infrastructure resilience that need to be dealt with: 1) Shortage of food, fuel, cash, medicine; 2) Limited capacity of alternative payment solutions; 3) Cities are more vulnerable than the countryside; 4) Economically vulnerable groups in society are more severely affected; 5) Trust maintenance needs; 6) Crisis communication needs; 7) Fragmentation of responsibility for critical infrastructures across many actors.
|
Juan Francisco Carías, Leire Labaka, Jose Maria Sarriegi, Andrea Tapia, & Josune Hernantes. (2019). The Dynamics of Cyber Resilience Management. In Z. Franco, J. J. González, & J. H. Canós (Eds.), Proceedings of the 16th International Conference on Information Systems for Crisis Response And Management. Valencia, Spain: Iscram.
Abstract: With the latent problem of security breaches, denial of service attacks, other types of cybercrime, and cyber incidents in general, the correct management of cyber resilience in critical infrastructures has become a high priority. However, the very nature of cyber resilience, requires managing variables whose effects are hard to predict, and that could potentially be expensive. This makes the management of cyber resilience in critical infrastructures a substantially hard task.
To address the unpredictability of the variables involved in managing cyber resilience, we have developed a system dynamics model that represents the theoretical behaviors of variables involved in the management of cyber resilience. With this model, we have simulated different scenarios that show how the dynamics of different variables act, and to show how the system would react to different inputs.
|
Kim Hagen, Meropi Tzanetakis, & Hayley Watson. (2015). Cascading effects in crises: categorisation and analysis of triggers. In L. Palen, M. Buscher, T. Comes, & A. Hughes (Eds.), ISCRAM 2015 Conference Proceedings ? 12th International Conference on Information Systems for Crisis Response and Management. Kristiansand, Norway: University of Agder (UiA).
Abstract: The analysis of cascading effects in crisis situations can enhance crisis managers? understanding of how crises unfold and what prominent triggers of cascading effects are. By identifying and categorising triggers of cascading effects, a greater understanding of critical points in crisis situations can be reached, which can contribute to strengthening practices of crisis management, including preparedness and response. Accordingly, this paper provides an insight into triggers of cascading effects, gained through the analysis of six case studies of crises that took place between 1999 and 2014. The analysis produced six categories of triggers, which are discussed here: the disruption of pre-existing relations of information, organisation, and supply, disturbance relations, pre-disaster conditions, and the malfunctioning of legal and regulatory relations. Authors argue that the categorisation of triggers aids anticipating cascading effects, along with predicting risks and planning for potential bottlenecks in crisis management.
|
Philippe Kruchten, Carson Woo, Kafui Monu, & Mandana Sotoodeh. (2007). A human-centered conceptual model of disasters affecting critical infrastructures. In K. Nieuwenhuis P. B. B. Van de Walle (Ed.), Intelligent Human Computer Systems for Crisis Response and Management, ISCRAM 2007 Academic Proceedings Papers (pp. 327–344). Delft: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: Understanding the interdependencies of critical infrastructures (power, transport, communication, etc.) is essential in emergency preparedness and response in the face of disasters. Unfortunately, many factors (e.g., unwillingness to disclose or share critical data) prohibited the complete development of such an understanding. As an alternative solution, this paper presents a conceptual model-an ontology-of disasters affecting critical infrastructures. We bring humans into the loop and distinguish between the physical and social interdependencies between infrastructures, where the social layer deals with communication and coordination among representatives (either humans or intelligent agents) from the various critical infrastructures. We validated our conceptual model with people from several different critical infrastructures responsible for disasters management. We expect that this conceptual model can later be used by them as a common language to communicate, analyze, and simulate their interdependencies without having to disclose all critical and confidential data. We also derived tools from it.
|
Leire Labaka, Josune Hernantes, Ana Laugé, & Jose Mari Sarriegi. (2011). Three units of analysis for Crisis Management and Critical Infrastructure Protection. In E. Portela L. S. M.A. Santos (Ed.), 8th International Conference on Information Systems for Crisis Response and Management: From Early-Warning Systems to Preparedness and Training, ISCRAM 2011. Lisbon: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: Society's welfare is very dependent on the effective performance of Critical Infrastructure (CI). Nowadays, CI constitutes a network of interconnected and interdependent entities. This means that a serious event in one CI can originate cascading events in the rest, leading to a serious crisis. As a consequence, Crisis Management (CM) and Critical Infrastructure Protection (CIP) should converge and integrate their findings, providing a more unified approach. One relevant issue when developing integrated CM/CIP research is what type of unit of analysis should be used, as it conditions the research objectives and questions. This paper presents an analysis of three different units of analysis used in CM research, focusing on the research objectives and questions used in them. These three different units of analysis have been used in a European CIP research project where three simulation models have been developed based on these three units of analysis.
|