Alexander Almer, Thomas Schnabel, Johann Raggam, Armin Köfler, Roland Wack, & Richard Feischl. (2015). Airborne multi-sensor management support system for emergency teams in natural disasters. In L. Palen, M. Buscher, T. Comes, & A. Hughes (Eds.), ISCRAM 2015 Conference Proceedings ? 12th International Conference on Information Systems for Crisis Response and Management. Kristiansand, Norway: University of Agder (UiA).
Abstract: This paper describes the development of a multi-functional airborne management support system within the frame of the Austrian national safety and security research programme. The objective was to assist crisis management tasks of emergency teams and armed forces in disaster management by providing multi spectral, near real-time airborne image data products. As time, flexibility and reliability as well as objective information are crucial aspects in emergency management, the used components are tailored to meet these requirements. This article includes the individual system components as well as their performance using examples from lab tests and real-life deployments. Based on this, the impact of existing command and control processes as well as the benefits for time critical decision making processes are described based on expertise of the involved end users. In addition, it gives an outlook on future perspectives.
|
Astrid Janssen, & Hanneke Vreugdenhil. (2015). Objective oriented exercise evaluation with TARCK-it. In L. Palen, M. Buscher, T. Comes, & A. Hughes (Eds.), ISCRAM 2015 Conference Proceedings ? 12th International Conference on Information Systems for Crisis Response and Management. Kristiansand, Norway: University of Agder (UiA).
Abstract: Do we fully utilize the results of disaster management exercises? Do we miss valuable feedback? Many different types of disaster management exercises, command post exercises, tabletop exercises, or serious games have a specific purpose. Generally each exercise is designed to meet its own particular exercise goals. Evaluation of the exercises is achieved in many different ways. Not always guidelines for exercise evaluation are present. Generally the exercise participants? performance is assessed by experienced staff members. The main purpose of the evaluation is to see whether the exercise goals are met. In this publication the authors suggest that a valuable source of information about the participants? performance in exercises remains often undiscovered. A new level of information can be unlocked by evaluating the exercise using a structured, analytical method. The method TARCK-it directly compares measured participant or team performance with the exercise goals.
|
Christoph Aubrecht, Sérgio Freire, Josef Fröhlich, Beatrice Rath, & Klaus Steinnocher. (2011). Integrating the concepts of foresight and prediction for improved disaster risk management. In E. Portela L. S. M.A. Santos (Ed.), 8th International Conference on Information Systems for Crisis Response and Management: From Early-Warning Systems to Preparedness and Training, ISCRAM 2011. Lisbon: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: This discussion paper focuses on conceptualizing the ultimate goal in disaster management, i.e. reduction of future risks and impacts and explicitly highlights how actions taken in various phases of integrated disaster risk management influence vulnerability and eventually overall risk characteristics. First, the advancement of the disaster management concept evolving from a cyclic perspective to a spiral view is described and the various stages of disaster management including risk analysis, mitigation, and response are explained. In an attempt to improve and advance disaster risk management, next, the concepts of foresight and prediction are described and its major differences are highlighted. Finally, the basic framework of risk governance is considered for integrating foresight and prediction and thus lifting disaster management to the next level. Active and transparent communication and participation is seen as the key for successfully implementing risk governance.
|
Oleg Aulov, Adam Price, & Milton Halem. (2014). AsonMaps: A platform for aggregation visualization and analysis of disaster related human sensor network observations. In and P.C. Shih. L. Plotnick M. S. P. S.R. Hiltz (Ed.), ISCRAM 2014 Conference Proceedings – 11th International Conference on Information Systems for Crisis Response and Management (pp. 802–806). University Park, PA: The Pennsylvania State University.
Abstract: In this paper, we describe AsonMaps, a platform for collection, aggregation, visualization and analysis of near real-time, geolocated quantifiable information from a variety of heterogeneous social media outlets in order to provide emergency responders and other coordinating federal agencies not only with the means of listening to the affected population, but also to be able to incorporate this data into geophysical and probabilistic disaster forecast models that guide their response actions. Hurricane Sandy disaster is examined as a use-case scenario discussing the different types of quantifiable information that can be extracted from Instagram and Twitter.
|
Arif Cagdas Aydinoglu, Elif Demir, & Serpil Ates. (2011). Designing a harmonized geo-data model for Disaster Management. In E. Portela L. S. M.A. Santos (Ed.), 8th International Conference on Information Systems for Crisis Response and Management: From Early-Warning Systems to Preparedness and Training, ISCRAM 2011. Lisbon: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: There are problems for managing and sharing geo-data effectively in Turkey. The key to resolving these problems is to develop a harmonized geo-data model. General features of this model are based on ISO/TC211 standards, INSPIRE Data Specifications, and expectations of Turkey National GIS actions. The generic conceptual model components were defined to harmonize geo-data and to produce data specifications. In order to enable semantic interoperability, application schemas were designed for data themes such as administrative unit, address, cadastre/building, hydrographic, topography, geodesy, transportation, and land cover/use. The model, as base and the domain geo-data model, is a starting point to create sector models in different thematic areas. Disaster Management Geo-data Model model was developed as an extension of base geo-data model to manage geo-data collaborate on disaster management activities. This model includes existing geo-data special for disaster management activities and dynamic data collecting during disaster.
|
Thomas Bader, Andreas Meissner, & Rolf Tscherney. (2008). Digital Map Table with Fovea-Tablett®: Smart furniture for emergency operation centers. In B. V. de W. F. Fiedrich (Ed.), Proceedings of ISCRAM 2008 – 5th International Conference on Information Systems for Crisis Response and Management (pp. 679–688). Washington, DC: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: During large-scale crisis events special emergency management structures are put in place in order to execute administrative-strategic and/or technical-tactical functions for potentially large geographical areas. The adequacy of information systems and the communication capabilities within such management structures largely determine the quality of situation awareness and are thus crucial for the effectiveness and efficiency of the emergency managers' work. In this field, this paper makes a threefold contribution: In the first part we provide a description of the organizational structure and the tasks in an emergency operation center (EOC) from a practitioner's perspective. Based on this primer, in the second part we propose four guidelines which help to design human-computer interfaces, especially adequate smart room technology, for this domain. Third, we present a system we designed along these guidelines. We specifically discuss the introduction of a Digital Map Table with Fovea-Tablett® into an EOC as “smart furniture” supporting both team and individual work.
|
Benjamin Herfort, Melanie Eckle, João Porto de Albuquerque, & Alexander Zipf. (2015). Towards assessing the quality of volunteered geographic information from OpenStreetMap for identifying critical infrastructures. In L. Palen, M. Buscher, T. Comes, & A. Hughes (Eds.), ISCRAM 2015 Conference Proceedings ? 12th International Conference on Information Systems for Crisis Response and Management. Kristiansand, Norway: University of Agder (UiA).
Abstract: Identifying the assets of a community that are part of its Critical Infrastructure (CI) is a crucial task in emergency planning. However, this task can prove very challenging due to the costs involved in defining the methodology and gathering the necessary data. Volunteered Geographic Information from collaborative maps such as OpenStreetMap (OSM) may be able to make a contribution in this context, since it contains valuable local knowledge. However, research is still due to assess the quality of OSM for the particular purpose of identifying critical assets. To fill this gap, this paper proposes a catalogue of critical asset types, based on the analysis of different reference frameworks. We thus analyze how good the emergent OSM data model is for representing these asset types, by verifying whether they can be mapped to tags used by the OSM community. Results show that critical asset types of all selected sectors and branches are well represented in OSM.
|
Imane Benkhelifa, Samira Moussaoui, & Nadia Nouali-Taboudjemat. (2013). Locating emergency responders using mobile wireless sensor networks. In J. Geldermann and T. Müller S. Fortier F. F. T. Comes (Ed.), ISCRAM 2013 Conference Proceedings – 10th International Conference on Information Systems for Crisis Response and Management (pp. 432–441). KIT; Baden-Baden: Karlsruher Institut fur Technologie.
Abstract: Emergency response in disaster management using wireless sensor networks has recently become an interest of many researchers in the world. This interest comes from the growing number of disasters and crisis (natural or man-made) affecting millions of lives and the easy-use of new and cheap technologies. This paper details another application of WSN in the post disaster scenario and comes up with an algorithm for localization of sensors attached to mobile responders (firefighters, policemen, first aid agents, emergency nurses, etc) while assisted by a mobile vehicle (fire truck, police car, or aerial vehicle like helicopters) called mobile anchor, sent to supervise the rescue operation. This solution is very efficient and rapidly deployable since no pre-installed infrastructure is needed. Also, there is no need to equip each sensor with a GPS receiver which is very costly and may increase the sensor volume. The proposed technique is based on the prediction of the rescuers velocities and directions considering previous position estimations. The evaluation of our solution shows that our technique takes benefit from prediction in a more effective manner than previous solutions. The simulation results show that our algorithm outperforms conventional Monte Carlo localization schemes by decreasing estimation errors with more than 50%.
|
Ali Benssam, Nadia Nouali-Taboudjemat, & Omar Nouali. (2013). Towards an It-based platform for disaster risks management in Algeria. In J. Geldermann and T. Müller S. Fortier F. F. T. Comes (Ed.), ISCRAM 2013 Conference Proceedings – 10th International Conference on Information Systems for Crisis Response and Management (pp. 72–77). KIT; Baden-Baden: Karlsruher Institut fur Technologie.
Abstract: Disaster management and risk prevention in Algeria have undergone many changes in the recent years. Important efforts have been provided on the legal and organizational sides to set the right conditions for an integrated and collaborative framework for disaster management in the country. The aim is to address the lack of information sharing, coordination and collaboration among the involved organizations. However, although the enhancement of the organizational arrangements, several problems persist mainly related to the implementation of these measures. To address this issue, in this paper, we propose an IT based platform in the field of risks prevention and disaster management (DM). This platform provides decision support, enables information sharing, helps to enhance public awareness regarding risks and disasters, supports communication and dissemination of information and alerts in disaster situations and facilitates the implementation of regulation related to disaster management.
|
Thomas Bernoulli, Gerald Glanzer, Thomas Wiebflecker, & Ulrich Walder. (2010). Infrastructurless indoor positioning system for first responders. In C. Zobel B. T. S. French (Ed.), ISCRAM 2010 – 7th International Conference on Information Systems for Crisis Response and Management: Defining Crisis Management 3.0, Proceedings. Seattle, WA: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: To overview the site of operation in case of an emergency is crucial for effective emergency management. This is a difficult task, in particular within large buildings or underground structures. Information about the whereabouts of the staff is a key element of effective disaster management. This paper presents an indoor positioning system which is able to track and locate people within buildings independent of any infrastructure (global navigation satellite system, WLAN installations, etc.). The system is based on inertial measurement units computing the track of its wearer and a component verifying this position estimates using floor plans of the building. This novel approach allows robust tracking and locating of action forces within buildings and underground structures.
|
Nitesh Bharosa, & Marijn Janssen. (2009). Reconsidering information management roles and capabilities in disaster response decision-making units. In S. J. J. Landgren (Ed.), ISCRAM 2009 – 6th International Conference on Information Systems for Crisis Response and Management: Boundary Spanning Initiatives and New Perspectives. Gothenburg: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: When disaster strikes, the emerging task environment requires relief agencies to transform from autonomous mono-disciplinary organizations into interdependent multidisciplinary decision-making units. Evaluation studies reveal that adaptation of information management to the changing task environment is difficult resulting in poor information quality, indicating information was incorrect, outdated or even unavailable to relief workers. In this paper, we adopt a theory-driven approach to develop a set of information management roles and dynamic capabilities for disaster management. Building on the principles of advance structuring and dynamic adjustment, we develop a set of roles and capabilities, which we illustrate and extend using two field studies in the Netherlands. By studying regional relief workers in action, we found that in tactical disaster response decisionmaking units, several information management roles are not addressed and that information managers are preoccupied with information gathering and reporting, whereas information quality assurance is not on the agenda.
|
Nitesh Bharosa, Bart Van Zanten, Jaco Appelman, & Arre Zuurmond. (2009). Identifying and confirming information and system quality requirements for multi-agency disaster management. In S. J. J. Landgren (Ed.), ISCRAM 2009 – 6th International Conference on Information Systems for Crisis Response and Management: Boundary Spanning Initiatives and New Perspectives. Gothenburg: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: This paper investigates the relevance and assurance of information and system quality as requirements for information systems success during disaster management. Despite the many examples of poor information quality and poor system quality, research on the relevance and assurance of these requirements is sparse. In order to design successful information systems for disaster management, a context related understanding of the organizational and technical measures for achieving these requirements is necessary. Accordingly, the goal of this paper is to identify and confirm information and system quality requirements for the design of information systems for disaster management. The results of our interviews with information architects indicate that while information quality requirements are considered to be very relevant, these are hard to measure and assure, and that currently much effort is being put into improving system quality requirements such as interoperability and ease of use.
|
Nitesh Bharosa, Sebastiaan Meijer, Marijn Janssen, & Fritjof Brave. (2010). Are we prepared? Experiences from developing dashboards for disaster preparation. In C. Zobel B. T. S. French (Ed.), ISCRAM 2010 – 7th International Conference on Information Systems for Crisis Response and Management: Defining Crisis Management 3.0, Proceedings. Seattle, WA: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: Relief agency managers show growing interest in dashboards for assessing multi-agency disaster preparedness. Yet, there is a dearth of research on the development and use of dashboards for disaster preparation. Consequently, information system architects in the disaster management domain have little guidance in developing dashboards. Here, dashboards refer to digitalized visualizations of performance indicators. In this paper, we discuss the experiences gained from an action research project on the development of dashboards for assessing disaster preparedness. The objective of this paper is to discuss experiences and tradeoffs extracted from the development of dashboards in practice. We organized a two-day gaming-simulation with relief agency managers for the evaluation of the dashboards. While the relief agency managers acknowledged the usefulness of dashboards in the disaster preparation process and expressed their intention to use these in practice, they suggested that the formulation and clustering of performance indicators requires further research.
|
Tao Bo, & Bartel A. Van De Walle. (2013). Meeting the sphere standards: An analysis of earthquake response in China. In J. Geldermann and T. Müller S. Fortier F. F. T. Comes (Ed.), ISCRAM 2013 Conference Proceedings – 10th International Conference on Information Systems for Crisis Response and Management (pp. 517–525). KIT; Baden-Baden: Karlsruher Institut fur Technologie.
Abstract: As a country which frequently suffers from natural disasters, especially earthquakes, China has implemented its own disaster management system to respond to them. The Chinese government gained practical experiences on how to respond to severe earthquakes after the 2008 Wenchuan Earthquake and 2010 Yushu Earthquake. Although China has done a lot to improve its response operations, challenges remain. This paper analyses what these challenges are by using the Sphere Standard as a benchmark to measure the Chinese response operations. The Sphere project was launched in 1997 by Non-Government Organizations (NGOs), the International Federation of Red Cross and Red Crescent Societies. It framed a Humanitarian Charter and established the Minimum Standards for response which emphasize meeting the urgent survival needs of people in the affected regions, while asserting their basic human right to a life with dignity. Based on this analysis, suggestions are provided to improve China's earthquake response operations.
|
Kees Boersma, Julie Ferguson, Peter Groenewegen, & Jeroen Wolbers. (2014). Beyond the myth of control: Toward network switching in disaster management. In and P.C. Shih. L. Plotnick M. S. P. S.R. Hiltz (Ed.), ISCRAM 2014 Conference Proceedings – 11th International Conference on Information Systems for Crisis Response and Management (pp. 125–129). University Park, PA: The Pennsylvania State University.
Abstract: A novel, 'net-centric' approach to disaster management is challenging traditional forms of command and control, through technology-supported, self-directed networks of heterogeneous stakeholders including affected citizens. Citizen involvement in crisis response can strengthen the resilience of local communities, and improve the relevance and delivery of response, evidenced by increasingly important Web2.0-based platforms. While netcentric responses show promise as a principle, it remains unclear how networks can be integrated in shared response infrastructures. We draw on the concepts of 'programming' and 'switching' to suggest a different perspective by which to explore the potential and consequences of interconnected networks. Finally, we propose a research agenda that can help identify and understand switching points in disaster response, comparing a weakly formalized management structure, but strong in citizen involvement, with a strongly formalized management structure, but weak in citizen involvement. We thereby suggest how response organizations can relinquish their reliance on control and command approaches, increasing their adaptive capacity to capitalize on citizen-based information.
|
Briony Gray, Mark J. Weal, & David Martin. (2017). Social Media during a Sustained Period of Crisis: The Case of the UK Storms. In eds Aurélie Montarnal Matthieu Lauras Chihab Hanachi F. B. Tina Comes (Ed.), Proceedings of the 14th International Conference on Information Systems for Crisis Response And Management (pp. 633–644). Albi, France: Iscram.
Abstract: This paper analyses the social media communications surrounding the 2015 – 2016 series of winter storms in the UK. Three storms were selected for analysis over a sustained period of time; these were storms Desmond, Eva and Frank which made landfall within quick succession of one another. In this case study we examine communications relating to multiple hazards which include flooding, evacuation and weather warnings using mainstream media content such as news stories, and online content such as Twitter data. Using a mixed method approach of content analysis combined with the application of a conceptual framework, we present (i.) the network of emergency responders managing events, (ii.) an analysis of crisis communications over time, and (iii.) highlight the barriers posed to effective social media communications during multi-hazard disasters. We conclude by assessing how these barriers may be lessened during prolonged periods of crisis.
|
Briony Gray, Mark Weal, & David Martin. (2018). Supporting Situational Awareness during Disasters: The Case of Hurricane Irma. In Kristin Stock, & Deborah Bunker (Eds.), Proceedings of ISCRAM Asia Pacific 2018: Innovating for Resilience – 1st International Conference on Information Systems for Crisis Response and Management Asia Pacific. (pp. 123–131). Albany, Auckland, New Zealand: Massey Univeristy.
Abstract: In a rapidly globalizing world, disasters and the way in which they are managed are changing. Social media, in conjunction with other online resources, now provide a wealth of information throughout the lifecycle of disasters and are relied upon by individuals and emergency responders alike. The study of such data as a lens for analysis has proved valuable in recent years, with many contributing to targeted emergency response protocols and improved methods for the management strategies of future crises. This study seeks to make a similar contribution by reporting on the use of such data for situational awareness during the case of hurricane Irma, which occurred between September and August 2017. Using a mixed methods approach the paper examines data from social media such as Twitter, as well as other online sources such as blogs and news media, to provide original insight into the disaster. A conceptual framework is then applied to determine the uses and users of social media, and to identify how these change throughout the course of the disaster, thus demonstrating situational awareness over time. The paper concludes with proposed improvements for disaster management and emergency response for future similar disasters, specifically in the hurricane season, in addition to more generalized hazards which are predicted to increase in their frequency and severity due to underlying issues such as climate change.
|
Briony Jennifer Gray. (2016). Social Media and Disasters: A New Conceptual Framework. In A. Tapia, P. Antunes, V.A. Bañuls, K. Moore, & J. Porto (Eds.), ISCRAM 2016 Conference Proceedings ? 13th International Conference on Information Systems for Crisis Response and Management. Rio de Janeiro, Brasil: Federal University of Rio de Janeiro.
Abstract: Conceptual frameworks which seek to integrate social media uses into disaster management strategies are employed in a range of events. With continued variations to social media practices, developments in technology, and changes in online behaviors, it is imperative to provide conceptual frameworks which are relevant, current and insightful. This paper conceptualizes a range of recent literature through an inductive methodology, and presents the themes of Web accessibility and online information reliability as broad and emerging considerations for the identification of social media uses during disasters. It presents a new conceptual framework of current social media uses which may be used to supplement existing frameworks. The framework has been applied to a dataset of Tweets from the 2015 Nepal earthquake to demonstrate its validity. Suggestions for future applications are discussed.
|
Bruna Diirr, Vânia de Oliveira Neves, Marcus Vinícius Vasconcelos de Almeida Cunha, Ana Beatriz Kapps dos Reis, & Jairo Francisco de Souza. (2021). Software Requirements for Disaster Management Systems. In Anouck Adrot, Rob Grace, Kathleen Moore, & Christopher W. Zobel (Eds.), ISCRAM 2021 Conference Proceedings – 18th International Conference on Information Systems for Crisis Response and Management (pp. 1042–1054). Blacksburg, VA (USA): Virginia Tech.
Abstract: Disasters are a major global problem and a serious threat to sustainable development. In this context, the development of disaster management systems becomes a complex activity, both due to the unpredictability of the events to be treated and the difficulty in extracting or identifying these systems users' needs (requirements). This study aims to understand the requirements usually elicited for disaster management systems and how such requirements are identified. Thus, a systematic mapping of literature (SM) and an open-source repository mining (RM) were performed. Results bring benefits both to academics and practitioners, as detail several characteristics of disaster management systems that could assist these systems development and decision-making, besides providing inputs to guide further research.
|
Cámbara, G., Grivolla, J., Farrús, M., & Wanner, L. (2023). Automatic Speech Translation for Multinational First Responder Teams. In Jaziar Radianti, Ioannis Dokas, Nicolas Lalone, & Deepak Khazanchi (Eds.), Proceedings of the 20th International ISCRAM Conference (pp. 188–196). Omaha, USA: University of Nebraska at Omaha.
Abstract: Big disasters as increasingly observed all over the world, often require the involvement of a large number of personnel, in particular personnel acting in the field, i.e., First Responders. By far not always local teams are sufficient. As a consequence, in particular in Europe, teams from different member states are dispatched to support the local teams. However, this bears a potential of miscommunication since it cannot be taken for granted that English is mastered to a sufficient degree by everybody to serve as lingua franca. In this paper, we present work in progress carried out in the context of the INGENIOUS project on an automatic speech translation module that facilitates the interaction between First Responders speaking different languages. The module is embedded into the Telegram Messenger Application and consists of three main modules: Automatic Speech Recognition, Machine Translation, and Text-to-Speech, which are applied in sequence. We opt for a pipeline solution instead of end-to-end speech translation in order to guarantee the availability of the original speech transcriptions and their translations.
|
Hüseyin Can Ünen, Muhammed Sahin, & Amr S. Elnashai. (2011). Assessment of interdependent lifeline networks performance in earthquake disaster management. In E. Portela L. S. M.A. Santos (Ed.), 8th International Conference on Information Systems for Crisis Response and Management: From Early-Warning Systems to Preparedness and Training, ISCRAM 2011. Lisbon: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: Several studies and observations regarding past earthquakes such as 1989 Loma Prieta, 1994 Northridge, or 1999 Marmara earthquakes have shown the importance of lifeline systems functionality on response and recovery efforts. The general direction of studies on simulating lifelines seismic performance is towards achieving more accurate models to represent the system behavior. The methodology presented in this paper is a product of research conducted in the Mid-America Earthquake Center. Electric power, potable water, and natural gas networks are modeled as interacting systems where the state of one network is influenced by the state of another network. Interdependent network analysis methodology provides information on operational aspects of lifeline networks in post-seismic conditions in addition to structural damage assessment. These results are achieved by different components of the tool which are classified as structural and topological. The topological component analyzes the post seismic operability of the lifeline networks based on the damage assessment outcome of the structural model. Following an overview of the models, potential utilizations in different phases of disaster management are briefly discussed.
|
Mifan Careem, David Bitner, & Ravindra De Silva. (2007). GIS integration in the Sahana disaster management system. In K. Nieuwenhuis P. B. B. Van de Walle (Ed.), Intelligent Human Computer Systems for Crisis Response and Management, ISCRAM 2007 Academic Proceedings Papers (pp. 211–218). Delft: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: Disaster Management often involves using Information and Communications Technology (ICT) to manage large amounts of data efficiently. Data gathered from disasters are often related to geographic locations, such as the affected geographic region, thus requiring special forms of data management software to utilize and manage them efficiently. Geographic Information Systems (GIS) are specialized database systems with software that can analyze and display data using digitized maps and tables for decision making. Preparing and correctly formatting data for use in a GIS is nontrivial, and it is even more challenging during disasters because of tight time constraints and inherent unpredictability of many natural disasters. This paper describes the important role of GIS in disaster management, and discusses the most common characteristics of GIS and their potential use in disaster response. We follow up with a detailed description of the GIS prototype in the Sahana Disaster Management System.
|
Carlo Alberto Bono, Barbara Pernici, Jose Luis Fernandez-Marquez, Amudha Ravi Shankar, Mehmet Oguz Mülâyim, & Edoardo Nemni. (2022). TriggerCit: Early Flood Alerting using Twitter and Geolocation – A Comparison with Alternative Sources. In Rob Grace, & Hossein Baharmand (Eds.), ISCRAM 2022 Conference Proceedings – 19th International Conference on Information Systems for Crisis Response and Management (pp. 674–686). Tarbes, France.
Abstract: Rapid impact assessment in the immediate aftermath of a natural disaster is essential to provide adequate information to international organisations, local authorities, and first responders. Social media can support emergency response with evidence-based content posted by citizens and organisations during ongoing events. In the paper, we propose TriggerCit: an early flood alerting tool with a multilanguage approach focused on timeliness and geolocation. The paper focuses on assessing the reliability of the approach as a triggering system, comparing it with alternative sources for alerts, and evaluating the quality and amount of complementary information gathered. Geolocated visual evidence extracted from Twitter by TriggerCit was analysed in two case studies on floods in Thailand and Nepal in 2021. The system respectively returned a large scale and a local scale alert, both in a timely manner and accompanied by a valid geographical description, while providing information complementary to existing disaster alert mechanisms.
|
Ian Carpenter. (2008). Implementing CAP and EDXL standards to enhance web-based crisis management. In B. V. de W. F. Fiedrich (Ed.), Proceedings of ISCRAM 2008 – 5th International Conference on Information Systems for Crisis Response and Management (2). Washington, DC: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: In response to the Australian Federal Government's legislative changes, including the Disaster Management Act 2003, both State and Local Government are finding it necessary to work ever more closely to ensure the successful development, approval and operation of local disaster management plans and activities. Working closely with numerous Local governments and their stakeholders, Faulkner Technologies has developed a web-based information management exchange to facilitate the timely and accurate collation, dissemination and sharing of event-related information during an incident or disaster. Challenges such as geographically-dispersed operations, information management, communication management, reporting and logging and capturing key learnings are common to all local councils. Our web-based information management exchange dovetails with both the paper-based Standard Operating Procedure and multiple communication systems significantly enhancing the management of disasters and incidents. In conjunction with NICTA (National ICT Australia) and their Smart Applications for Emergencies (SAFE) project, the solution uses the Common Alerting Protocol (CAP) and Emergency Data eXchange Language (EDXL) standards for message distribution.
|
Rui Chen, Thirumurugan Thiyagarajan, Raghav H. Rao, & JinKyu LeeK. (2010). Design of a FOSS system for flood disaster management. In C. Zobel B. T. S. French (Ed.), ISCRAM 2010 – 7th International Conference on Information Systems for Crisis Response and Management: Defining Crisis Management 3.0, Proceedings. Seattle, WA: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: In this paper we study how information technology solutions can be used when disasters strike. This research in progress focuses on flood disasters and it proposes the design for flood disaster management. To increase the utility of the disaster management information system, we follow the free and open source system (FOSS) concept. Informed by the management tasks of flood response, we elaborate the system requirements and key functionalities. The system has received preliminary evaluation by the domain experts and is currently under further development.
|