toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Rocco Sergio Palermo; Antonio De Nicola pdf  isbn
openurl 
  Title A Simulation Framework for Epidemic Spreading in Semantic Social Networks Type Conference Article
  Year 2022 Publication ISCRAM 2022 Conference Proceedings – 19th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal Iscram 2022  
  Volume Issue Pages 266-273  
  Keywords Epidemics; Simulation; Semantic Social Network; Ontology; Crisis  
  Abstract Epidemic spreading simulation in social networks denotes a set of techniques that allow to assess the temporal evolution and the consequences of a pandemic. They were largely used by governments and International health organizations during the COVID-19 world crisis to decide the appropriate countermeasures to limit the diffusion of the disease. Among them, the existing simulation techniques based on a network model aimed at studying the infectious disease dynamics have a prominent role and are widely adopted. However, even if they leverage the topological structure of a social network, they disregard the intrinsic and individual features of its members. A semantic social network is defined as a structure consisting of interlinking layers, which include a social network layer, to represent people and their relationships and a concept network layer, to represent concepts, their ontological relationships and implicit similarities. Here, we propose a novel epidemic simulation framework that allows to describe a community of people as a semantic social network, to adopt the most commonly used compartmental models for describing epidemic spreading, such as Susceptible-Infected-Susceptible (SIS) or Susceptible-Infected-Removed (SIR), and to enable semantic reasoning to increase the accuracy of the simulation. Finally, we show how to use the framework to simulate the impact of a pandemic in a community where the job of each member is known in advance.  
  Address Università Guglielmo Marconi; ENEA  
  Corporate Author Thesis  
  Publisher Place of Publication Tarbes, France Editor Rob Grace; Hossein Baharmand  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2411-3387 ISBN 978-82-8427-099-9 Medium  
  Track AI and Intelligent Systems for Crises and Risks Expedition Conference  
  Notes Approved no  
  Call Number ISCRAM @ idladmin @ Serial 2416  
Share this record to Facebook
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: