toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Rene Windhouwer; Gerdien A. Klunder; F.M. Sanders pdf  isbn
openurl 
  Title Decision support system emergency planning, creating evacuation strategies in the event of flooding Type Conference Article
  Year 2005 Publication Proceedings of ISCRAM 2005 – 2nd International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2005  
  Volume Issue Pages 171-180  
  Keywords Artificial intelligence; Behavioral research; Decision support systems; Disaster prevention; Disasters; Information systems; Oil well flooding; Risk perception; Traffic control; Decision support system (dss); Decision supports; Emergency planning; Evacuation; Evacuation strategy; Extreme weather; River flooding; Traffic flow; Floods  
  Abstract The Decision Support System (DSS) Emergency Planning is designed for use in the event of sea or river flooding. It makes accessible all the information related to the decision whether to evacuate an area. An important factor in this decision is the time required for the evacuation. The model used by the DSS Emergency Planning system to estimate the time required employs a strategy that prevents congestion on the road network in the area at risk. The use of the DSS Emergency Planning system during the proactive and prevention phases enables disaster containment organisations to prepare better for a flood situation. Moreover, all relevant information is saved and is therefore available for the post-disaster evaluation. The DSS Emergency Planning system can play a significant role in ensuring that the evacuation of an area at risk goes according to plan. In the future the DSS Emergency Planning system can also be used to evacuate people in the event of a nuclear, natural fire or extreme weather disaster.  
  Address Ingenieursbureau Oranjewoud, Netherlands; TNO Inro, Netherlands  
  Corporate Author Thesis  
  Publisher Royal Flemish Academy of Belgium Place of Publication Brussels Editor B. Van de Walle, B. Carle  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2411-3387 ISBN 9076971099 Medium  
  Track DECISION SUPPORT SYSTEMS Expedition Conference 2nd International ISCRAM Conference on Information Systems for Crisis Response and Management  
  Notes Approved no  
  Call Number Serial 1094  
Share this record to Facebook
 

 
Author (up) Robert Zinke; Laura Künzer; Benjamin Schröder; Christina Schäfer pdf  openurl
  Title Integrating Human Factors into Evacuation Simulations – Application of the Persona Method for Generating Populations Type Conference Article
  Year 2017 Publication Proceedings of the 14th International Conference on Information Systems for Crisis Response And Management Abbreviated Journal Iscram 2017  
  Volume Issue Pages 127-138  
  Keywords Persona method; pedestrian simulation; preparedness; human factors; evacuation  
  Abstract For assessing evacuation dynamics in disaster situations, current approaches of pedestrian simulations increasingly include additional human characteristics. One aim is to assess realistic effects of structural changes of an infrastructure on evacuation behavior displayed by users. Creating agents with supplementary physical and psychological human characteristics and assembling the agents in accordance to the user's population may be beneficial not only to support decision making. The analysis of simulated effects of, e.g., informational strategies will foster crisis and disaster management. This paper combines knowledge about users in subway systems and highlights benefits of using the Persona method to improve objectivity in the specification of different user types. Persona method is adapted to pedestrian simulation. Using data from the authors´ field studies, personas are developed and implemented for an evacuation simulation. First findings suggest that including personas into pedestrian simulation influences the results with respect to the required safe evacuation time (RSET).  
  Address Team Human Factors; Jülich Supercomputing Centre; CIK -Paderborn University  
  Corporate Author Thesis  
  Publisher Iscram Place of Publication Albi, France Editor Tina Comes, F.B., Chihab Hanachi, Matthieu Lauras, Aurélie Montarnal, eds  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2411-3387 ISBN Medium  
  Track Analytical Modeling and Simulation Expedition Conference 14th International Conference on Information Systems for Crisis Response And Management  
  Notes Approved no  
  Call Number Serial 2005  
Share this record to Facebook
 

 
Author (up) Ronja Addams-Moring pdf  isbn
openurl 
  Title Tsunami self-evacuation of a group of western travelers and resulting requirements for multi-hazard early warning Type Conference Article
  Year 2007 Publication Intelligent Human Computer Systems for Crisis Response and Management, ISCRAM 2007 Academic Proceedings Papers Abbreviated Journal ISCRAM 2007  
  Volume Issue Pages 83-92  
  Keywords Developing countries; Ad hoc MEA system; Early warning; False alarms; Group evacuation; Mea; Mobile emergency announcement; Pre-disaster mitigation; Tsunamis  
  Abstract This paper describes the experiences of a West-European project group in Sri Lanka in March 2005, during a tsunami threat. They had previous disaster related knowledge and used both local guidance, global media and contacts back home, but could not get adequate information about how much time they had, how likely a tsunami was, or which countries had ordered evacuations. Their decision to evacuate was based on their own reasoning and influenced most by one trusted local resident. Their mobile phone communication with their relations in Europe created a de facto ad hoc mobile emergency announcement (MEA) system. Their decision to return relied heavily on the ad hoc MEA text messages, as local authorities had not yet issued an all-clear. The findings underline the importance of multiple early warning languages and delivery channels and suggest that when relevant, 'event onset time' should be explicit in early warning.  
  Address Helsinki University of Technology, Finland  
  Corporate Author Thesis  
  Publisher Information Systems for Crisis Response and Management, ISCRAM Place of Publication Delft Editor B. Van de Walle, P. Burghardt, K. Nieuwenhuis  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2411-3387 ISBN 9789054874171; 9789090218717 Medium  
  Track GCMR Expedition Conference 4th International ISCRAM Conference on Information Systems for Crisis Response and Management  
  Notes Approved no  
  Call Number Serial 252  
Share this record to Facebook
 

 
Author (up) Rouba Iskandar; Julie Dugdale; Elise Beck; Cécile Cornou pdf  openurl
  Title PEERS: An integrated agent-based framework for simulating pedestrians' earthquake evacuation Type Conference Article
  Year 2021 Publication ISCRAM 2021 Conference Proceedings – 18th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal Iscram 2021  
  Volume Issue Pages 86-96  
  Keywords Seismic risk, human behavior, interdisciplinarity, evacuation, agent-based model  
  Abstract Traditional seismic risk assessment approaches focus on assessing the damages to the urban fabric and the resultant socio-economic consequences, without adequately incorporating the social component of risk. However, the human behavior is essential for anticipating the impacts of an earthquake, and should be included in quantitative risk assessment studies. This paper proposes an interdisciplinary agent-based modeling framework for simulating pedestrians' evacuation in an urban environment during and in the immediate aftermath of an earthquake. The model is applied to Beirut, Lebanon and integrates geo-spatial, socio-demographic, and quantitative behavioral data corresponding to the study area. Several scenarios are proposed to be explored using this model in order to identify the influence of relevant model parameters. These experiments could contribute to the development of improved of emergency management plans and prevention strategies.  
  Address Université Grenoble Alpes, ISTerre, Pacte, LIG; Université Grenoble Alpes, LIG; Université Grenoble Alpes, Pacte; Université Grenoble Alpes, ISTerre  
  Corporate Author Thesis  
  Publisher Virginia Tech Place of Publication Blacksburg, VA (USA) Editor Anouck Adrot; Rob Grace; Kathleen Moore; Christopher W. Zobel  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-1-949373-61-5 ISBN Medium  
  Track AI and Intelligent Systems for Crises and Risks Expedition Conference 18th International Conference on Information Systems for Crisis Response and Management  
  Notes rouba.iskandar@univ-grenoble-alpes.fr Approved no  
  Call Number ISCRAM @ idladmin @ Serial 2316  
Share this record to Facebook
 

 
Author (up) Sérgio Freire; Christoph Aubrecht; Stephanie Wegscheider pdf  isbn
openurl 
  Title When the tsunami comes to town – Improving evacuation modeling by integrating high-resolution population exposure Type Conference Article
  Year 2012 Publication ISCRAM 2012 Conference Proceedings – 9th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2012  
  Volume Issue Pages  
  Keywords Floods; Information systems; Risk assessment; 3D analysis; Accurate modeling; Evacuation modeling; Horizontal and vertical displacement; Lisbon; Mitigation measures; Population exposure; Spatial modeling; Tsunamis  
  Abstract Tsunamis are a major risk for Lisbon (Portugal) coastal areas whose impacts can be extremely high, as confirmed by the past occurrence of major events. For correct risk assessment and awareness and for implementing mitigation measures, detailed simulation of exposure and evacuation is essential. This work uses a spatial modeling approach for estimating residential population distribution and exposure to tsunami flooding by individual building, and for simulating their evacuation travel time considering horizontal and vertical displacement. Results include finer evaluation of exposure to, and evacuation from, a potential tsunami, considering the specific inundation depth and building's height. This more detailed and accurate modeling of exposure to and evacuation from a potential tsunami can benefit risk assessment and contribute to more efficient Crisis Response and Management. © 2012 ISCRAM.  
  Address FCSH, Research Centre for Geography and Regional Planning, Nova University of Lisbon, Portugal; AIT Austrian Institute of Technology, Foresight and Policy Development Department, Austria; German Aerospace Center (DLR), German Remote Sensing Data Center (DFD), Germany  
  Corporate Author Thesis  
  Publisher Simon Fraser University Place of Publication Vancouver, BC Editor L. Rothkrantz, J. Ristvej, Z.Franco  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2411-3387 ISBN 9780864913326 Medium  
  Track Geographic Information Science and Technology Expedition Conference 9th International ISCRAM Conference on Information Systems for Crisis Response and Management  
  Notes Approved no  
  Call Number Serial 110  
Share this record to Facebook
 

 
Author (up) Shengcheng Yuan; Ma Ma; H. Zhang; Yi Liu. pdf  isbn
openurl 
  Title An urban traffic evacuation model with decision-making capability Type Conference Article
  Year 2013 Publication ISCRAM 2013 Conference Proceedings – 10th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2013  
  Volume Issue Pages 317-321  
  Keywords Computer simulation; Decision making; Highway administration; Information systems; Roads and streets; Decision making support; Evacuation modeling; Evacuation process; Partial information; Simulation modules; System optimizations; Traffic directions; Traffic information; Emergency traffic control  
  Abstract Traffic evacuation is one of the most challenging problems in a mega city due to crowded road conditions. This study focuses on developing a traffic evacuation model with decision-making capability. The model basically consists of two modules. The first one is a decision-making support module which runs very fast and provides short-forecast. The second one is a simulation module, which is used for simulating real evacuation process and for overall performance evaluation with vehicle tracking model. The first module can be considered as a “local” module as only partial information, such as traffic information in certain junctions is available. The second module can be considered as a global module which provides traffic directions for junction, and effective using of road-nets. With integration of two modules, overall system optimization may be achieved. Simulation cases are given for model validation and results are satisfied.  
  Address Institute of Public Safety Research, Tsinghua University, Beijing, China  
  Corporate Author Thesis  
  Publisher Karlsruher Institut fur Technologie Place of Publication KIT; Baden-Baden Editor T. Comes, F. Fiedrich, S. Fortier, J. Geldermann and T. Müller  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2411-3387 ISBN 9783923704804 Medium  
  Track Decision Support Systems Expedition Conference 10th International ISCRAM Conference on Information Systems for Crisis Response and Management  
  Notes Approved no  
  Call Number Serial 1136  
Share this record to Facebook
 

 
Author (up) Shengcheng Yuan; Yi Liu; Gangqiao Wang; Hongshen Sun; H. Zhang pdf  isbn
openurl 
  Title A dynamic-data-driven driving variability modeling and simulation for emergency evacuation Type Conference Article
  Year 2014 Publication ISCRAM 2014 Conference Proceedings – 11th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2014  
  Volume Issue Pages 70-74  
  Keywords Computer simulation; Decision making; Information systems; Accurate prediction; Adaptive simulation; Decision making support; Driving variability; Emergency evacuation; Emergency situation; Microscopic traffic simulation; Variability model; Traffic control  
  Abstract This paper presents a dynamic data driven approach of describing driving variability in microscopic traffic simulations for both normal and emergency situations. A four-layer DGIT (Decision, Games, Individual and Transform) framework provides the capability of describing the driving variability among different scenarios, vehicles, time and models. A four-step CCAR (Capture, Calibration, Analysis and Refactor) procedure captures the driving behaviors from mass real-time data to calibrate and analyze the driving variability. Combining the DGIT framework and the CCAR procedure, the system can carry out adaptive simulation in both normal and emergency situations, so that be able to provide more accurate prediction of traffic scenarios and help for decision-making support. A preliminary experiment is performed on a major urban road, and the results verified the feasibility and capability of providing prediction and decision-making support.  
  Address Institute of Public Safety Research, Tsinghua University, Beijing, China; Department of Engineering Physics, Tsinghua University, Beijing, China  
  Corporate Author Thesis  
  Publisher The Pennsylvania State University Place of Publication University Park, PA Editor S.R. Hiltz, M.S. Pfaff, L. Plotnick, and P.C. Shih.  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2411-3387 ISBN 9780692211946 Medium  
  Track Analytic Modeling and Simulation Expedition Conference 11th International ISCRAM Conference on Information Systems for Crisis Response and Management  
  Notes Approved no  
  Call Number Serial 1137  
Share this record to Facebook
 

 
Author (up) Siska Fitrianie; Leon J. M. Rothkrantz pdf  isbn
openurl 
  Title Dynamic Routing during Disaster Events Type Conference Article
  Year 2015 Publication ISCRAM 2015 Conference Proceedings ? 12th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2015  
  Volume Issue Pages  
  Keywords disaster events; dynamic routing; Evacuation; mitigation planning  
  Abstract Innovations in mobile technology allow the use of Internet and smartphones for communicating disasters and coordinating evacuations. However, given the turbulent nature of disaster situations, the people and systems at crisis center are subjected to information overload, which can obstruct timely and accurate information sharing. A dynamic and automated evacuation plan that is able to predict future disaster outcome can be used to coordinate the affected people to safety in times of crisis. In this paper, we present a dynamic version of the shortest path algorithm of Dijkstra. The algorithm is able to compute the shortest path from the user?s location (sent by the smartphone) to the safety area by taking into account possible affected areas in future. We aim at employing the computed routes on our mobile communication system for navigating affected people during emergency and disaster evacuations. Two simulation studies have validated the performance of the developed algorithm.  
  Address  
  Corporate Author Thesis  
  Publisher University of Agder (UiA) Place of Publication Kristiansand, Norway Editor L. Palen; M. Buscher; T. Comes; A. Hughes  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2411-3387 ISBN 9788271177881 Medium  
  Track Planning, Foresight and Risk Analysis Expedition Conference ISCRAM 2015 Conference Proceedings ? 12th International Conference on Information Systems for Crisis Response and Management  
  Notes Approved yes  
  Call Number Serial 1302  
Share this record to Facebook
 

 
Author (up) Susanne Kubisch; Johanna Stötzer; Sina Keller; María Bull; Andreas Braun pdf  isbn
openurl 
  Title Combining a social science approach and GIS-based simulation to analyse evacuation in natural disasters: A case study in the Chilean community of Talcahuano Type Conference Article
  Year 2019 Publication Proceedings of the 16th International Conference on Information Systems for Crisis Response And Management Abbreviated Journal Iscram 2019  
  Volume Issue Pages  
  Keywords Interdisciplinary approach, case study, evacuation, tsunami, recommendations disaster risk management  
  Abstract In rapid-onset disasters the time needed for evacuation is crucial. Aside from the behaviour of the population, the

road network plays a fundamental role. It serves as a medium to reach a safe area. This study analyses the entire

evacuation process, from decision-making up to the arrival at an evacuation zone by combining standardised

questionnaires and GIS-based simulation. Based on a case study in the Chilean community of Talcahuano, an

event-based past scenario and a hypothetical future scenario is investigated, integrating the affected population in

the research process. The main problem identified in past evacuations has been time delay due to congestions,

which also is evident in the results of the hypothetical future scenario. A result which supports evacuation by foot.

This paper argues that a combination of scientific methods is essential for analysing evacuation and to reduce the

risk due to time delay, critical route and transport medium choice.
 
  Address Karlsruhe Institute of Technology, Germany;Universidad Católica de la Santísima Concepción, Chile  
  Corporate Author Thesis  
  Publisher Iscram Place of Publication Valencia, Spain Editor Franco, Z.; González, J.J.; Canós, J.H.  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2411-3387 ISBN 978-84-09-10498-7 Medium  
  Track T7- Planning, Foresight and Risk Analysis Expedition Conference 16th International Conference on Information Systems for Crisis Response and Management (ISCRAM 2019)  
  Notes Approved no  
  Call Number Serial 1877  
Share this record to Facebook
 

 
Author (up) Takuya Oki; Toshihiro Osaragi pdf  openurl
  Title Evaluation of Conversion to Quake-Resistant Buildings in Terms of Wide-Area Evacuation and Fire-Brigade Accessibility Type Conference Article
  Year 2017 Publication Proceedings of the 14th International Conference on Information Systems for Crisis Response And Management Abbreviated Journal Iscram 2017  
  Volume Issue Pages 25-41  
  Keywords Conversion; quake-resistant building; property damage; wide-area evacuation; fire-brigade  
  Abstract It is important to evaluate the effects of improving the disaster vulnerability of towns by using various indices related to human damage. In this paper, we focus on conversion of low quake-resistant old buildings. Firstly, we construct a simulation model, which describes property damage (such as building-collapse and street-blockage), wide-area evacuation behavior, and fire-brigade's activities immediately after a large earthquake occurs. Next, using the simulation model, we estimate the travel time required for evacuation, the number of evacuees trapped on streets (or in blocks), and the access time of fire-brigades to fires in case that the ratio of quake-resistant buildings in the area increases to a certain value. Based on the results, we discuss the effects by converting old buildings into quake-resistant ones on reducing the difficulty in wide-area evacuation and improving the accessibility of fire-brigades in multiple study areas with different characteristics.  
  Address Tokyo Institute of Technology  
  Corporate Author Thesis  
  Publisher Iscram Place of Publication Albi, France Editor Tina Comes, F.B., Chihab Hanachi, Matthieu Lauras, Aurélie Montarnal, eds  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2411-3387 ISBN Medium  
  Track Analytical Modeling and Simulation Expedition Conference 14th International Conference on Information Systems for Crisis Response And Management  
  Notes Approved no  
  Call Number Serial 1997  
Share this record to Facebook
 

 
Author (up) Takuya Oki; Toshihiro Osaragi pdf  isbn
openurl 
  Title Wide-area Evacuation Difficulty in Densely-built Wooden Residential Areas Type Conference Article
  Year 2016 Publication ISCRAM 2016 Conference Proceedings ? 13th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2016  
  Volume Issue Pages  
  Keywords Large Earthquake; Wide-area Evacuation Difficulty; Property Damage; Multi-Agent Simulation; Densely-built Wooden Residential Area  
  Abstract In aiming to decrease the number of casualties and people with difficulty in wide-area evacuations due to a large earthquake, it is highly important to visualize and quantify the potential danger in residential areas. In this paper, we construct a multi-agent simulation model, which describes property damage (such as building-collapse, the spread of fire and blocking of streets) and people?s evacuation behavior after an earthquake occurring. Using this simulation model, we quantify the wide-area evacuation difficulty in densely-built wooden residential areas, and evaluate the past project to improve buildings and streets based on this indicator. Furthermore, we demonstrate the effects of adding new evacuation routes between two intersections of streets with narrow width and long distance. Through these case studies, the effectiveness of our simulation model on urban disaster mitigation planning is shown.  
  Address  
  Corporate Author Thesis  
  Publisher Federal University of Rio de Janeiro Place of Publication Rio de Janeiro, Brasil Editor A. Tapia; P. Antunes; V.A. Bañuls; K. Moore; J. Porto  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2411-3397 ISBN 978-84-608-7984-18 Medium  
  Track Analytical Modeling and Simulation Expedition Conference 13th International Conference on Information Systems for Crisis Response and Management  
  Notes Approved no  
  Call Number Serial 1336  
Share this record to Facebook
 

 
Author (up) Takuya Tsuchiya; Toshihiro Osaragi; Takuya Oki pdf  isbn
openurl 
  Title Influence of Information-Hearsay on Wide-Area Evacuation at a Large Earthquake Type Conference Article
  Year 2015 Publication ISCRAM 2015 Conference Proceedings ? 12th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2015  
  Volume Issue Pages  
  Keywords evacuation behavior; information-hearsay; simulation; virtual city; wide-area evacuation  
  Abstract In order to evacuate smoothly and safely at a large earthquake, it is important to obtain the information on property damages (such as street-blockage and fire) and on evacuation areas by hearsay, guidance and bulletin boards. In this paper, we construct a model, which describes wide-area evacuation, information-hearsay among evacuees and guidance behavior. Using this model, we evaluate the influence of information-hearsay on wide-area evacuation in terms of the evacuation time and the risk on evacuation routes. Simulation results demonstrate that the locational information of evacuation areas and damages is the most helpful for people who are unfamiliar with an area. In addition, we discuss the effective and efficient methods of evacuation guidance. The results show that the guides contribute to reducing the evacuation time and the risk on evacuation routes of evacuees, and sharing information among guides enables more efficient and safer evacuation / guidance.  
  Address  
  Corporate Author Thesis  
  Publisher University of Agder (UiA) Place of Publication Kristiansand, Norway Editor L. Palen; M. Buscher; T. Comes; A. Hughes  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2411-3387 ISBN 9788271177881 Medium  
  Track Analytical Modelling and Simulation Expedition Conference ISCRAM 2015 Conference Proceedings ? 12th International Conference on Information Systems for Crisis Response and Management  
  Notes Approved no  
  Call Number Serial 1181  
Share this record to Facebook
 

 
Author (up) Tobias Hellmund; Jürgen Moßgraber; Manfred Schenk; Philipp Hertweck; Hylke van der Schaaf; Hans Springer pdf  openurl
  Title The Design and Implementation of ZEUS: Novel Support in Managing Large-Scale Evacuations Type Conference Article
  Year 2021 Publication ISCRAM 2021 Conference Proceedings – 18th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal Iscram 2021  
  Volume Issue Pages 1003-1014  
  Keywords Management of Large-Scale Evacuations, Emergency Accommodation Management, Evacuation Management  
  Abstract This paper introduces ZEUS, a novel software tool for the management of large-scale evacuations. The tasks ZEUS supports were derived from two Standard Operating Procedures, developed on demand of the German federal states. To this date, the authors are not aware of another software tool that gives technical support to the management and control of large-scale evacuations as ZEUS does. It comprises functionalities to (pre-)plan a large-scale evacuation, as well as functions for the management of the flow of evacuees during an evacuation situation. This paper describes how the requirements of ZEUS were derived from the two named planning frameworks and how use-cases were developed to meet the requirements; these use-cases were conceptualized as different steps of a workflow. In an evaluation, the paper gives credit how ZEUS can provide technical support for the evaluation of large-scale evacuations. ZEUS will undergo a two-staged review process: first, a controlled theoretical scenario is tested and, upon successful completion, a practical test on a large scale will be executed.  
  Address Fraunhofer IOSB; Fraunhofer IOSB; Fraunhofer IOSB; Fraunhofer IOSB; Fraunhofer IOSB; Ministry of Interior, Digitization, and Migration Baden-Württemberg  
  Corporate Author Thesis  
  Publisher Virginia Tech Place of Publication Blacksburg, VA (USA) Editor Anouck Adrot; Rob Grace; Kathleen Moore; Christopher W. Zobel  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-1-949373-61-5 ISBN Medium  
  Track Other Expedition Conference 18th International Conference on Information Systems for Crisis Response and Management  
  Notes tobias.hellmund@iosb.fraunhofer.de Approved no  
  Call Number ISCRAM @ idladmin @ Serial 2392  
Share this record to Facebook
 

 
Author (up) Toshihiro Osaragi; Koji Ogino; Noriaki Hirokawa; Takuya Oki pdf  isbn
openurl 
  Title Severity of Crowding at Evacuation Shelters after a Major Earthquake Type Conference Article
  Year 2022 Publication ISCRAM 2022 Conference Proceedings – 19th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal Iscram 2022  
  Volume Issue Pages 22-43  
  Keywords large earthquake; evacuation shelter; building damage; water-supply failure; simulation; evacuation behavior  
  Abstract A number of residents are presumed to evacuate to shelters after a large earthquake. However, the congestion of evacuation shelters has not been enough discussed. In this paper, we propose an evacuation behavior model, which includes sub-models on building damage, water-supply failure, power failure, fire damage, and elevator stall. Using the model estimated using the survey data of the past earthquakes, we discuss the congestion of evacuation shelters under the assumption of Tokyo Bay northern earthquake. Finally, we discuss improvement of water pipes for earthquake resistance to reduce the congestion degree of evacuation shelters, which varies according to regional vulnerability.  
  Address Tokyo Institute of Technology  
  Corporate Author Thesis  
  Publisher Place of Publication Tarbes, France Editor Rob Grace; Hossein Baharmand  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2411-3387 ISBN 978-82-8427-099-9 Medium  
  Track Analytical Modeling and Simulation Expedition Conference  
  Notes Approved no  
  Call Number ISCRAM @ idladmin @ Serial 2397  
Share this record to Facebook
 

 
Author (up) Xiaoyan Zhang; Graham Coates; Sarah Dunn; Jean Hall pdf  isbn
openurl 
  Title Emergency Evacuation from a Multi-floor Building using Agent-based Modeling Type Conference Article
  Year 2020 Publication ISCRAM 2020 Conference Proceedings – 17th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal Iscram 2020  
  Volume Issue Pages 188-199  
  Keywords Emergency Evacuation, Agent-based Modeling and Simulation, Multi-floor Building.  
  Abstract This paper presents an overview of the ongoing research into the development of an agent-based model to enable simulations to be performed of agents evacuating from a multi-floor building with a complex layout, including staircases. Specifically, a flow field of navigation objects is constructed pre-computation, which stores the directions and shortest distances to all exits and staircases. Using the flow field, a navigation method is proposed for agents familiar with the environment to identify and follow the shortest route to a chosen exit. Preliminary simulations have been performed to investigate the effect on evacuation time of (i) exit configurations and (ii) familiarity of agents with the building layout. In assessing the effect of exit configurations, results show that the location of the main entrance has a significant influence on evacuation time. In addition, having more exits does not necessarily lead to a shorter evacuation time. In terms of the effect of familiarity of agents, having more agents with a greater level of familiarity does not significantly reduce evacuation time in most cases.  
  Address Newcastle University; Newcastle University; Newcastle University; Newcastle University  
  Corporate Author Thesis  
  Publisher Virginia Tech Place of Publication Blacksburg, VA (USA) Editor Amanda Hughes; Fiona McNeill; Christopher W. Zobel  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-1-949373-27-18 ISBN 2411-3404 Medium  
  Track Analytical Modeling and Simulation Expedition Conference 17th International Conference on Information Systems for Crisis Response and Management  
  Notes X.Zhang110@newcastle.ac.uk Approved no  
  Call Number Serial 2219  
Share this record to Facebook
 

 
Author (up) Xiaoyan Zhang; Graham Coates; Xiaoyang Ni pdf  openurl
  Title Agent-based Modelling and Simulation for Lecture Theatre Emergency Evacuation Type Conference Article
  Year 2017 Publication Proceedings of the 14th International Conference on Information Systems for Crisis Response And Management Abbreviated Journal Iscram 2017  
  Volume Issue Pages 63-71  
  Keywords Emergency evacuation; agent-based modelling and simulation  
  Abstract This paper presents an overview of ongoing research into the implementation of an agent-based model aimed at providing decision support for the layout design of lecture theatres and human behavioural management in emergency evacuation. The model enables the spatial layout of lecture theatres to be configured and incorporates agent behaviours at the basic movement and individual level. In terms of individual behaviours, agents can be competitive, cooperative, climb obstacles (e.g. seating and desks) and fall down. Two cases are investigated to evaluate the effects of different exit locations in lecture theatres and competitive behaviour of agents on evacuation efficiency in multiple scenarios.  
  Address China University of Geosciences, Wuhan; Durham University  
  Corporate Author Thesis  
  Publisher Iscram Place of Publication Albi, France Editor Tina Comes, F.B., Chihab Hanachi, Matthieu Lauras, Aurélie Montarnal, eds  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2411-3387 ISBN Medium  
  Track Analytical Modeling and Simulation Expedition Conference 14th International Conference on Information Systems for Crisis Response And Management  
  Notes Approved no  
  Call Number Serial 2000  
Share this record to Facebook
 

 
Author (up) Xiujuan Zhao; Jianguo Chen; Peng Du; Wei Xu; Ran Liu; Hongyong Yuan pdf  isbn
openurl 
  Title Location-allocation model for earthquake shelter solved using MPSO algorithm Type Conference Article
  Year 2019 Publication Proceedings of the 16th International Conference on Information Systems for Crisis Response And Management Abbreviated Journal Iscram 2019  
  Volume Issue Pages  
  Keywords Earthquake shelter location-allocation, evacuation time minimization, objective, MPSO  
  Abstract Constructing shelters in suitable quantities, with adequate capacities and at the right locations is essential for evacuees under earthquake disasters. As one of the disaster management methods, constructing shelters can help to significantly reduce disruption and devastation to affected population. Mathematical models have been used to solve this problem allied with a heuristic optimization algorithm. The optimization of evacuation efficiency, as one of the most important objectives, has many expressive forms, such as minimizing evacuation distance and evacuation time. This paper proposes a new model that aims to minimize evacuation time with a new calculation method and to maximize total evacuees? comfort level. The modified particle swarm optimization (MPSO) algorithm is employed to solve the model and the result is compared with a model that calculated evacuation time differently and a model without distance constraint, respectively.  
  Address Tsinghua University, China, People's Republic of;Beijing Global Safety Technology Co., Ltd, China, People's Republic of;Beijng Normal University, China, People's Republic of  
  Corporate Author Thesis  
  Publisher Iscram Place of Publication Valencia, Spain Editor Franco, Z.; González, J.J.; Canós, J.H.  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2411-3387 ISBN 978-84-09-10498-7 Medium  
  Track T1- Analytical Modeling and Simulation Expedition Conference 16th International Conference on Information Systems for Crisis Response and Management (ISCRAM 2019)  
  Notes Approved no  
  Call Number Serial 1927  
Share this record to Facebook
 

 
Author (up) Yaping Ma; Hui Zhang; Tao Chen; Rui Yang pdf  isbn
openurl 
  Title Decentralized Evacuation System Based on Occupants Distribution and Building Information Type Conference Article
  Year 2015 Publication ISCRAM 2015 Conference Proceedings ? 12th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2015  
  Volume Issue Pages  
  Keywords decentralized system; decision making support system; Evacuation guidance; sensor and network  
  Abstract Effective evacuation is critical for safety of occupants. The exiting evacuation systems lack flexibility and don?t consider the distribution of occupants. It is possible to direct occupants to danger areas or cause congestion in certain areas. In this paper, a decentralized evacuation system is proposed to compute the safest path in real time. The system is composed of fire detection sensors, zone controllers, elevator sensors, human tracking and monitoring systems and dynamic egress signs. All devices are placed at the predetermined locations based on integrated design of the building. The entire building is divided into many basic zones which are operating quite independently, and global information is communicated to neighboring zones and consequently to entire network by zone controllers. The system acts in decentralized fashion. The elevator and dynamic factors are considered in guidance system. Simulations are performed to determine the advantage of the system.  
  Address  
  Corporate Author Thesis  
  Publisher University of Agder (UiA) Place of Publication Kristiansand, Norway Editor L. Palen; M. Buscher; T. Comes; A. Hughes  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2411-3387 ISBN 9788271177881 Medium  
  Track Decision Support Systems Expedition Conference ISCRAM 2015 Conference Proceedings ? 12th International Conference on Information Systems for Crisis Response and Management  
  Notes Approved yes  
  Call Number Serial 1294  
Share this record to Facebook
 

 
Author (up) Yasir Javed; Tony Norris; David Johnston pdf  openurl
  Title Design approach to an emergency decision support system for mass evacuation Type Conference Article
  Year 2010 Publication ISCRAM 2010 – 7th International Conference on Information Systems for Crisis Response and Management: Defining Crisis Management 3.0, Proceedings Abbreviated Journal ISCRAM 2010  
  Volume Issue Pages  
  Keywords Decision support systems; Design; Information science; Information systems; Ontology; Volcanoes; Edss; Emergency; Emergency decision makings; Emergency decision support; Evacuation; Human system interface; Information needs; Volcanic eruptions; Artificial intelligence  
  Abstract This paper is directed primarily to investigating the information needs of emergency managers following recognition of a risk of volcanic eruption. These needs include type of information required during the collection, integration, synthesis, presentation, and sharing of information. This will identify and model the processes underpinning the design of an emergency decision support system (EDSS). Exploration of the information needs, flows, and processes involved in emergency decision making can improve the design of EDSS both in terms of their content and the all-important human-system interfaces that determine their usability.The information attributes and flows then lead to the development of a prototype system that can be evaluated to test and refine the concepts.  
  Address Institute of Information and Mathematical Sciences, Massey University, Auckland, New Zealand; Joint Centre of Disaster Research, Massey University, Wellington, New Zealand  
  Corporate Author Thesis  
  Publisher Information Systems for Crisis Response and Management, ISCRAM Place of Publication Seattle, WA Editor S. French, B. Tomaszewski, C. Zobel  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2411-3387 ISBN Medium  
  Track Poster Session Expedition Conference 7th International ISCRAM Conference on Information Systems for Crisis Response and Management  
  Notes Approved no  
  Call Number Serial 622  
Share this record to Facebook
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: