|   | 
Details
   web
Records
Author (up) Shengcheng Yuan; Yi Liu; Gangqiao Wang; Hongshen Sun; H. Zhang
Title A dynamic-data-driven driving variability modeling and simulation for emergency evacuation Type Conference Article
Year 2014 Publication ISCRAM 2014 Conference Proceedings – 11th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2014
Volume Issue Pages 70-74
Keywords Computer simulation; Decision making; Information systems; Accurate prediction; Adaptive simulation; Decision making support; Driving variability; Emergency evacuation; Emergency situation; Microscopic traffic simulation; Variability model; Traffic control
Abstract This paper presents a dynamic data driven approach of describing driving variability in microscopic traffic simulations for both normal and emergency situations. A four-layer DGIT (Decision, Games, Individual and Transform) framework provides the capability of describing the driving variability among different scenarios, vehicles, time and models. A four-step CCAR (Capture, Calibration, Analysis and Refactor) procedure captures the driving behaviors from mass real-time data to calibrate and analyze the driving variability. Combining the DGIT framework and the CCAR procedure, the system can carry out adaptive simulation in both normal and emergency situations, so that be able to provide more accurate prediction of traffic scenarios and help for decision-making support. A preliminary experiment is performed on a major urban road, and the results verified the feasibility and capability of providing prediction and decision-making support.
Address Institute of Public Safety Research, Tsinghua University, Beijing, China; Department of Engineering Physics, Tsinghua University, Beijing, China
Corporate Author Thesis
Publisher The Pennsylvania State University Place of Publication University Park, PA Editor S.R. Hiltz, M.S. Pfaff, L. Plotnick, and P.C. Shih.
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9780692211946 Medium
Track Analytic Modeling and Simulation Expedition Conference 11th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 1137
Share this record to Facebook
 

 
Author (up) Thomas Bernard; Mathias Braun; Olivier Piller; Denis Gilbert; Jochen Deuerlein; Andreas Korth; Reik Nitsche; Marie Maurel; Anne-Claire Sandraz; Fereshte Sedehizade; Jean-Marc Weber; Caty Werey
Title SMaRT-OnlineWDN: Online security management and reliability toolkit for water distribution networks Type Conference Article
Year 2013 Publication ISCRAM 2013 Conference Proceedings – 10th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2013
Volume Issue Pages 171-176
Keywords Computer simulation; Contamination; Decision support systems; Industrial management; Information systems; Runoff; Water quality; Water supply; Abnormal conditions; Online simulation; Operation and control; Sensor measurements; Source identification; Transport modeling; Water distribution networks; Water supply networks; Water distribution systems
Abstract Water distribution Networks (WDNs) are critical infrastructures that are exposed to deliberate or accidental contamination. Until now, no monitoring system is capable of protecting a WDN in real time. In the immediate future water service utilities that are installing water quantity and quality sensors in their networks will be producing a continuous and huge data stream for treating. The main objective of the project SMaRT-OnlineWDN is the development of an online security management toolkit for water distribution networks that is based on sensor measurements of water quality as well as water quantity and online simulation. Its field of application ranges from detection of deliberate contamination, including source identification and decision support for effective countermeasures, to improved operation and control of a WDN under normal and abnormal conditions.
Address Fraunhofer Institute IOSB, Germany; IRSTEA, France; 3S Consult GmbH, Germany; DVGW-Technologiezentrum Wasser, Germany; Veolia Environnement, France; Veolia Eau d'Ile de France, France; Berliner Wasserbetriebe, Germany; Communauté Urbaine de Strasbourg, Germany; Engees, France
Corporate Author Thesis
Publisher Karlsruher Institut fur Technologie Place of Publication KIT; Baden-Baden Editor T. Comes, F. Fiedrich, S. Fortier, J. Geldermann and T. Müller
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9783923704804 Medium
Track Critical Infrastructures Expedition Conference 10th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 313
Share this record to Facebook
 

 
Author (up) Tim Schoenharl; Greg Madey; Gábor Szabó; Albert-László Barabási
Title WIPER: A multi-agent system for emergency response Type Conference Article
Year 2006 Publication Proceedings of ISCRAM 2006 – 3rd International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2006
Volume Issue Pages 282-287
Keywords Computer simulation; Information services; Information systems; Multi agent systems; Multimedia systems; Service oriented architecture (SOA); Web services; Agent based simulation; Emergency planners; Emergency response; Emergency response systems; Emergency situation; GIS modeling; Integrated systems; Web-based interface; Emergency services
Abstract This paper describes the proposed WIPER system. WIPER is intended to provide emergency planners and responders with an integrated system that will help to detect possible emergencies, as well as to suggest and evaluate possible courses of action to deal with the emergency. The system is designed as a multi-agent system using web services and the service oriented architecture. Components of the system for detecting and mitigating emergency situations can be added and removed from the system as the need arises. WIPER is designed to evaluate potential plans of action using a series of GIS enabled Agent-Based simulations that are grounded on realtime data from cell phone network providers. The system relies on the DDDAS concept, the interactive use of partial aggregate and detailed realtime data to continuously update the system and allow emergency planners to stay updated on the situation. The interaction with the system is done using a web-based interface and is composed of several overlaid layers of information, allowing users rich detail and flexibility.
Address University of Notre Dame, Dept of Computer Science and Engineering, Notre Dame, IN 46556, United States; University of Notre Dame, Dept of Physics, Notre Dame, IN 46556, United States
Corporate Author Thesis
Publisher Royal Flemish Academy of Belgium Place of Publication Newark, NJ Editor B. Van de Walle, M. Turoff
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9090206019; 9789090206011 Medium
Track MULTIAGENT SYSTEMS FOR EMERGENCY MANAGEMENT Expedition Conference 3rd International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 921
Share this record to Facebook
 

 
Author (up) Tomoichi Takahashi
Title Agent-based disaster simulation evaluation and its probability model interpretation Type Conference Article
Year 2007 Publication Intelligent Human Computer Systems for Crisis Response and Management, ISCRAM 2007 Academic Proceedings Papers Abbreviated Journal ISCRAM 2007
Volume Issue Pages 369-376
Keywords Disasters; Probability; Agent based simulation; Agent based social simulation; Agent-based approach; Agent-based social simulations; Disaster simulation; Evaluation method; Local government; Probability modeling; Computer simulation
Abstract Agent-based simulations enable the simulation of social phenomenon by representing human behaviors using agents. Human actions such as evacuating to safe havens or extinguishing fires in disaster areas are important during earthquakes. The inclusion of human actions in calculating the damage at disaster sites provides useful data to local governments for planning purposes. In order to practically apply these simulation results, these results should be tested using actual data. Further, these results should be analyzed and explained in a manner that people who are not agent programmers can also understand easily. First, the possibility of applying agent-based approaches to social tasks is shown by comparing the simulation results with those obtained from other methods. Next, we propose a method to present agent behaviors using a probability model and discuss the results of applying this method to the RoboCup Rescue simulation data. These will delve into future research topics for developing agent based social simulations to practical ones.
Address Meijo University, Japan
Corporate Author Thesis
Publisher Information Systems for Crisis Response and Management, ISCRAM Place of Publication Delft Editor B. Van de Walle, P. Burghardt, K. Nieuwenhuis
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9789054874171; 9789090218717 Medium
Track ASCM Expedition Conference 4th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 988
Share this record to Facebook