|   | 
Details
   web
Records
Author Bjørn Erik Munkvold; Jaziar Radianti; Jan Ketil Rød; Tomasz Opach; Mikael Snaprud; Sofie Pilemalm; Deborah Bunker
Title Sharing Incident and Threat Information for Common Situational Understanding Type Conference Article
Year 2019 Publication Proceedings of the 16th International Conference on Information Systems for Crisis Response And Management Abbreviated Journal Iscram 2019
Volume Issue Pages
Keywords Common operational picture, situational awareness, collaboration support, geographic information systems, terminology harmonisation
Abstract This paper presents the INSITU research project initiated to provide a systematic approach for effective sharing, integration and use of information from different sources, to establish a common operational picture (COP) and shared situational understanding among multiple actors in emergency response. The solution developed will provide an interactive map display, integrating harmonisation of terminology and collaboration support for information sharing and synthesis. The enhanced COP will also support evaluation and learning from exercises and incidents. The project involves close collaboration with emergency management stakeholders in Norway, for requirements analysis, participatory design, and validation of project deliverables. The research will improve information sharing and decision support in emergency operations centres, which will contribute to improve societal resilience through more effective response capability.
Address CIEM, University of Agder;Norwegian University of Science and Technology;Tingtun AS;CARER, Linköping University;University of Sydney
Corporate Author Thesis
Publisher Iscram Place of Publication Valencia, Spain Editor Franco, Z.; González, J.J.; Canós, J.H.
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 978-84-09-10498-7 Medium
Track T15- Open Track Expedition Conference 16th International Conference on Information Systems for Crisis Response and Management (ISCRAM 2019)
Notes Approved no
Call Number Serial (down) 1994
Share this record to Facebook
 

 
Author Sarp Yeletaysi; Frank Fiedrich; John R. Harrald
Title A framework for integrating GIS and systems simulation to analyze operational continuity of the petroleum supply chain Type Conference Article
Year 2008 Publication Proceedings of ISCRAM 2008 – 5th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2008
Volume Issue Pages 586-595
Keywords Critical infrastructures; Disaster prevention; Disasters; Energy resources; Hurricanes; Information systems; Petroleum analysis; Public works; Supply chain management; Disaster management; Disruptions; Hurricane katrina; Hurricane Rita; Petroleum supply; Systems simulation; Geographic information systems
Abstract Crisis and disaster management is a field that requires the understanding and application of tools and knowledge from multiple disciplines. Hurricanes Katrina and Rita in 2005 have proven that U.S. petroleum infrastructure is vulnerable to major supply disruptions as a direct result of disasters. Due to the structure of U.S. oil supply chain, primary oil production centers (i.e. PADD* 3) are geographically separated from primary demand centers (i.e. PADD 1), which creates a natural dependency between those districts. To better understand the extent of those dependencies and downstream impacts of supply disruptions, a multi-disciplinary research approach is necessary. The cross-disciplines in this research include disaster management, critical infrastructure and oil supply chain management, and the utilization of geographic information systems (GIS) and systems simulation. This paper specifically focuses on the framework for integrating GIS and systems simulation as analysis tools in this research.
Address George Washington University, ICDRM, United States
Corporate Author Thesis
Publisher Information Systems for Crisis Response and Management, ISCRAM Place of Publication Washington, DC Editor F. Fiedrich, B. Van de Walle
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9780615206974 Medium
Track Impact of Disasters on Industry and Economic Effects Expedition Conference 5th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial (down) 1130
Share this record to Facebook
 

 
Author Kera Z. Watkins; Katrina Simon-Agolory; Anuradha Venkateswaran; Deok Nam
Title Get a plan! Automatically generating disaster preparedness plans using WILBER Type Conference Article
Year 2011 Publication 8th International Conference on Information Systems for Crisis Response and Management: From Early-Warning Systems to Preparedness and Training, ISCRAM 2011 Abbreviated Journal ISCRAM 2011
Volume Issue Pages
Keywords Disaster prevention; Disasters; Information systems; Risk analysis; Risk assessment; Disaster preparedness; Disaster preparedness plans; Disaster recovery; Emergency plans; Emergency response; Historical information; Wilberforce University; Wireless sensor; Geographic information systems
Abstract It is common knowledge that having a relevant disaster preparedness plan is helpful for saving lives and money during an actual crisis. However, few individuals and families have a plan in the United States. Less than 10% of US states provide online resources for individuals and families to develop customized basic disaster plans. Those states sometimes offer additional information particular to their areas. However, existing online resources could be extended nationally by automatically providing additional plan information based on localized threats (e.g. climate, terrorism, etc.) within a geographical area. Wilberforce University has designed a solution called Wilberforce's Information Library Boosting Emergency Response (WILBER) which utilizes an interdisciplinary approach to automatically generate information based on localized threats within a geographical area to extend a basic disaster preparedness plan for individuals and families. WILBER combines current and historical information from Geographical Information Systems (GIS), risk assessment, wireless sensors, and computing.
Address Wilberforce University, United States; Solnect Consulting Group, United States
Corporate Author Thesis
Publisher Information Systems for Crisis Response and Management, ISCRAM Place of Publication Lisbon Editor M.A. Santos, L. Sousa, E. Portela
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9789724922478 Medium
Track Planning and Foresight Expedition Conference 8th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial (down) 1068
Share this record to Facebook
 

 
Author Jiri Trnka; Michael Le Duc; Ake Sivertun
Title Inter-organizational issues in ICT, GIS and GSD – Mapping Swedish emergency management at the local and regional level Type Conference Article
Year 2005 Publication Proceedings of ISCRAM 2005 – 2nd International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2005
Volume Issue Pages 75-82
Keywords Civil defense; Disasters; Electronic data interchange; Information systems; Risk management; Societies and institutions; Emergency management; Geo-spatial data; Ict; Interorganizational cooperation; Services; Geographic information systems
Abstract Inter-organizational issues are very challenging in emergency management (EM). In this paper, aspects of information and communication technologies (ICT), geographical information systems (GIS) and geospatial data (GSD) in the Swedish EM system, an EM system involving a large number of EM organizations, are reported based on a case study. The issues concerned include separated ICT & GIS development between organizations and formation of technological coalitions, problems of identification and access of GSD, located through the large number organizations, as well as uncoordinated launching of web-based GIS service. Possible implications of this situation for command and control are discussed. Additionally, areas for further research are suggested.
Address Department of Computer and Information Science, Linköping University, Sweden
Corporate Author Thesis
Publisher Royal Flemish Academy of Belgium Place of Publication Brussels Editor B. Van de Walle, B. Carle
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9076971099 Medium
Track COMPLEXITY and INTEROPERABILITY Expedition Conference 2nd International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial (down) 1019
Share this record to Facebook
 

 
Author Brian M. Tomaszewski; Alan M. MacEachren
Title A distributed spatiotemporal cognition approach to visualization in support of coordinated group activity Type Conference Article
Year 2006 Publication Proceedings of ISCRAM 2006 – 3rd International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2006
Volume Issue Pages 347-351
Keywords Disaster prevention; Information systems; Web services; Distributed cognition; Geo visualizations; Geocollaboration; International Relief; Spatiotemporal Cognition; Web-map services; Geographic information systems
Abstract Technological advances in both distributed cooperative work and web-map services have the potential to support distributed and collaborative time-critical decision-making for crisis response. We address this potential through the theoretical perspective of distributed cognition and apply this perspective to development of a geocollaborationenabled web application that supports coordinated crisis management activities. An underlying goal of our overall research program is to understand how distributed cognition operates across groups working to develop both awareness of the geographic situation within which events unfold, and insights about the processes that have lead to that geographic situation over time. In this paper, we present our preliminary research on a web application that addresses these issues. Specifically, the application (key parts of which are implemented) enables online, asynchronous, map-based interaction between actors, thus supporting distributed spatial and temporal cognition, and, more specifically, situational awareness and subsequent action in the context of humanitarian disaster relief efforts.
Address Department of Geography, GeoVISTA Center, Pennsylvania State University, United States
Corporate Author Thesis
Publisher Royal Flemish Academy of Belgium Place of Publication Newark, NJ Editor B. Van de Walle, M. Turoff
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9090206019; 9789090206011 Medium
Track VISUALIZATION IN EMERGENCY MANAGEMENT Expedition Conference 3rd International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial (down) 1010
Share this record to Facebook
 

 
Author André Simões; Armanda Rodrigues; Patricia Pires; Luis Sá
Title Evaluating emergency scenarios using historic data: Flood management Type Conference Article
Year 2011 Publication 8th International Conference on Information Systems for Crisis Response and Management: From Early-Warning Systems to Preparedness and Training, ISCRAM 2011 Abbreviated Journal ISCRAM 2011
Volume Issue Pages
Keywords Artificial intelligence; Cellular automata; Computer simulation; Decision support systems; Flood control; Floods; Geographic information systems; Information systems; Risk management; Civil protection; Complex evaluations; Development process; Emergency management; Emergency scenario; Flood forecasting models; Flood management; Physical conditions; Risk perception
Abstract The evaluation of an emergency scenario is often based on the use of simulation models. The specificity of these models involves the need for a complex evaluation of the problem domain, including the physical conditions behind the considered threat. Based on emergency occurrences data, provided by the Portuguese National Civil Protection Authority, we are currently developing a methodology for evaluating a real situation, based on past occurrences. The aim is to develop a platform that will enable the evaluation of a risk scenario based on existing civil protection data. The methodology under development should enable the evaluation of different scenarios based on the collected available data. This will be achieved thanks to the facilitated configuration of several aspects, such as the geographical region and relevant properties of the considered threat. In this paper, we describe the methodology development process and the current state of the platform for risk evaluation.
Address CITI, FCT/UNL, Portugal; Autoridade Nacional de Protecção Civil, Portugal
Corporate Author Thesis
Publisher Information Systems for Crisis Response and Management, ISCRAM Place of Publication Lisbon Editor M.A. Santos, L. Sousa, E. Portela
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9789724922478 Medium
Track Geographic Information Science Expedition Conference 8th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial (down) 952
Share this record to Facebook
 

 
Author Benjamin Schooley; Brian Hilton; Yoonmi Lee; Rondalynne McClintock; Samuel-Ojo Olusola; Thomas Horan
Title CrashHelp: A GIS tool for managing emergency medical responses to motor vehicle crashes Type Conference Article
Year 2010 Publication ISCRAM 2010 – 7th International Conference on Information Systems for Crisis Response and Management: Defining Crisis Management 3.0, Proceedings Abbreviated Journal ISCRAM 2010
Volume Issue Pages
Keywords Geographic information systems; Information systems; Iterative methods; Vehicles; Emergency medical response; Ems; Mash-up; Motor vehicle crashes; Tcis; Emergency services
Abstract This paper presents the research, design, and development of a comprehensive trauma information system inclusive of 911dispatch, Emergency Medical Services, and hospital trauma information. A proof-of-concept GIS based information system was designed and developed for use by trauma and emergency medical practitioners. Methods used include end-user focus group discussions, quantitative and qualitative data analysis, and an iterative system development process. A framework from prior research was utilized; a framework that considers the visualization of emergency medical events across an end-to-end continuum of patient care. Analyses performed provided a multi-layered understanding of the practical and theoretical implications of using an end-to-end information schema for emergency response and trauma health systems.
Address School of Information Systems and Technology, Claremont Graduate University, United States
Corporate Author Thesis
Publisher Information Systems for Crisis Response and Management, ISCRAM Place of Publication Seattle, WA Editor S. French, B. Tomaszewski, C. Zobel
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN Medium
Track Geo-Information Support Expedition Conference 7th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial (down) 923
Share this record to Facebook
 

 
Author André Sabino; Armanda Rodrigues
Title Understanding the role of cooperation in emergency plan construction Type Conference Article
Year 2011 Publication 8th International Conference on Information Systems for Crisis Response and Management: From Early-Warning Systems to Preparedness and Training, ISCRAM 2011 Abbreviated Journal ISCRAM 2011
Volume Issue Pages
Keywords Computer supported cooperative work; Geographic information systems; Interactive computer systems; Co-operation strategy; Emergency planning; Emergency response plans; Extract informations; Information organization; Information representation; Manage information; Spatial informations; Information systems
Abstract In this paper we describe a proposal for information organization for computer supported cooperative work, while working with spatial information. It is focused on emergency response plan construction, and the requirements extracted from that task. At the centre of our proposal is the analysis of the structure of the cooperative workspace. We argue that the internal information representation should follow a spatial approach, tying the structure used to manage users with the structure used to manage information, suggesting the use of different spaces to represent the information. The gain we expect from this approach is the improved capacity to extract information on how people are cooperating and their relationship with the information they are working with. The ideas are introduced while focusing on real life emergency planning activities, where we discuss the current shortcomings of the cooperation strategies in use and propose a solution.
Address Departamento de Informática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829-516 Caparica, Portugal
Corporate Author Thesis
Publisher Information Systems for Crisis Response and Management, ISCRAM Place of Publication Lisbon Editor M.A. Santos, L. Sousa, E. Portela
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9789724922478 Medium
Track Social Media and Collaborative Systems Expedition Conference 8th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial (down) 903
Share this record to Facebook
 

 
Author Muhammad Tauhidur Rahman; Tarek Rashed
Title Towards a geospatial approach to post-disaster environmental impact assessment Type Conference Article
Year 2007 Publication Intelligent Human Computer Systems for Crisis Response and Management, ISCRAM 2007 Academic Proceedings Papers Abbreviated Journal ISCRAM 2007
Volume Issue Pages 219-226
Keywords Damage detection; Disasters; Environmental impact assessments; Geographic information systems; Remote sensing; Analytical approach; Built-in components; Conceptual frameworks; Disaster mitigation; Impact assessments; Rapid environmental impact assessment (REA); Severity index; Statistical decomposition; Environmental impact
Abstract Natural disasters often leave profound impacts on the environment. Existing disaster impact assessment methods fall short in facilitating the relief work and in conducting cross-sectional comparison of various facets of such impacts. The development of a standardized index for measuring/monitoring the environmental impacts of disasters is necessary to address this gap. This paper proposes a conceptual framework to study the environmental impacts via remote sensing/GIS based geospatial analytical approach by developing a post-disaster environmental severity index. It considers physical, social and built-in components of the environment and identifies several key indicators of disaster impacts. Through statistical decomposition of a large number of environmental impact indicators, the study proposes a composite post-disaster environmental severity index (PDESI). Mapping of the proposed index would help identification of areas and component of the environment that are severely affected by a disaster, and formulation of disaster mitigation and damage recovery plans accordingly.
Address University of Oklahoma, United States
Corporate Author Thesis
Publisher Information Systems for Crisis Response and Management, ISCRAM Place of Publication Delft Editor B. Van de Walle, P. Burghardt, K. Nieuwenhuis
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9789054874171; 9789090218717 Medium
Track REAS Expedition Conference 4th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial (down) 865
Share this record to Facebook
 

 
Author Alec Pawling; Tim Schoenharl; Ping Yan; Greg Madey
Title WIPER: An emergency response system Type Conference Article
Year 2008 Publication Proceedings of ISCRAM 2008 – 5th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2008
Volume Issue Pages 702-710
Keywords Data mining; Geographic information systems; Information systems; Agent based simulation; Emergency response; Emergency response systems; Emergency situation; Integrated systems; Running simulations; Simulation systems; Web-based front end; Financial data processing
Abstract This paper describes the WIPER system, a proof of concept prototype, and progress made on its development to date. WIPER is intended to provide emergency response managers with an integrated system that detects possible emergencies from cellular communication data, attempts to predict the development of emergency situations, and provides tools for evaluating possible courses of action in dealing with emergency situations. We describe algorithms for detecting anomalies in streaming cellular communication network data, the implementation of a simulation system that validates running simulations with new real world data, and a web-based front end to the WIPER system. We also discuss issues relating to the real-time aggregation of data from the cellular service provider and its distribution to components of the WIPER system.
Address Dept. of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46656, United States
Corporate Author Thesis
Publisher Information Systems for Crisis Response and Management, ISCRAM Place of Publication Washington, DC Editor F. Fiedrich, B. Van de Walle
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9780615206974 Medium
Track Decentralized and Self-Organizing IT-Infrastructures for Crisis Response and Management Expedition Conference 5th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial (down) 836
Share this record to Facebook
 

 
Author Marius J. Paulikas; Andrew Curtis; Thomas Veldman
Title Spatial video street-scale damage assessment of the Washington, Illinois Tornado of 2013 Type Conference Article
Year 2014 Publication ISCRAM 2014 Conference Proceedings – 11th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2014
Volume Issue Pages 329-333
Keywords Damage detection; Geographic information systems; Information systems; Building damage; Built environment; Damage assessments; Local moran's i; Spatial analysis; Spatial videos; Tornado damage; Z-score analysis; Tornadoes
Abstract This paper advances a growing body of mobile mapping work which captures building scale tornado damage in order to reveal vulnerabilities, or protections, within an otherwise apparently homogenous damage path. The hope is to find how micro geography, or built environment structure patterning might lead to policy advances with regards to rebuilding of critical infrastructure in tornado prone areas. This paper will use spatially encoded video to record damage patterns for the Washington, Illinois tornado of November 17, 2013. What makes this event notable is the location and time of year which can be considered outside the norm. Individual building damage data are coded using the Tornado Injury Scale (TIS) and then analyzed using two forms of local area spatial analysis – a Getis-Ord (Gi) z-score analysis to identify hotspots of damage, and a Local Moran's I to identify building outliers within hotspots.
Address Dept. of Geography, Kent State University, United States; GIS Health and Hazards Lab, Dept. of Geography, Kent State University, United States
Corporate Author Thesis
Publisher The Pennsylvania State University Place of Publication University Park, PA Editor S.R. Hiltz, M.S. Pfaff, L. Plotnick, and P.C. Shih.
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9780692211946 Medium
Track Geographic Information Science Expedition Conference 11th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial (down) 834
Share this record to Facebook
 

 
Author Cynthia Nikolai; Irma Becerra-Fernandez; Troy Johnson; Greg Madey
Title Leveraging WebEOC in support of the Haitian relief effort: Insights and lessons learned Type Conference Article
Year 2010 Publication ISCRAM 2010 – 7th International Conference on Information Systems for Crisis Response and Management: Defining Crisis Management 3.0, Proceedings Abbreviated Journal ISCRAM 2010
Volume Issue Pages
Keywords Disaster prevention; Disasters; Earthquakes; Economic and social effects; Geographic information systems; Information management; Information systems; Management information systems; Risk management; Disaster relief; Earthquake response; Emergency management; Emergency operations centers; Information management software; Information management systems; Miami-Dade County; WebEOC; Human resource management
Abstract The magnitude seven earthquake that rocked Haiti has been a devastating disaster for the small country (USGS 2010). They are not alone in this crisis, however. When the earthquake struck, thousands of US citizens responded by donating money, resources, people, and time to aid in the disaster relief. To respond to the incident and to create a secure information-sharing environment, the Florida Miami-Dade County and State Emergency Operations Centers (EOC) were activated. The main information system in use at the Miami-Dade EOC is WebEOC, a web-based crisis information management system that aids in secure coordination and collaboration among EOC staff, liaisons, and emergency managers. As a result of the earthquake response efforts using this system, we have identified seven main insights and lessons learned with respect to crisis information management software. In this paper, we discuss Miami-Dade's role in the Haitian relief efforts and how this lead to these insights and lessons learned.
Address University of Notre Dame, United States; Florida International University, United States; Miami-Dade County Emergency Management, United States
Corporate Author Thesis
Publisher Information Systems for Crisis Response and Management, ISCRAM Place of Publication Seattle, WA Editor S. French, B. Tomaszewski, C. Zobel
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN Medium
Track Poster Session Expedition Conference 7th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial (down) 810
Share this record to Facebook
 

 
Author Jose M. Nadal-Serrano
Title Towards very simple, yet effective on-the-go incident response preplanning: Using publicly-available GIS to improve firefighters' traditional approach Type Conference Article
Year 2010 Publication ISCRAM 2010 – 7th International Conference on Information Systems for Crisis Response and Management: Defining Crisis Management 3.0, Proceedings Abbreviated Journal ISCRAM 2010
Volume Issue Pages
Keywords Fire extinguishers; Geographic information systems; Information systems; Back-up systems; Critical systems; Emergency response; Firefighter; First responders; Pre-planning; Response time (computer systems)
Abstract Incident response preplanning has an increasing importance in today's Fire Brigades incident response. This paper presents some concepts that could be easily applied, supplying the firefighters with a simple, yet reliable tool that can be configured to include data available at the time of resource activation. This early information and the route map to the incident can be of big help for firefighters if presented in a convenient way. Offline (paper) backup solutions and the need for APIs that may be used to exploit geographic data are also discussed. Finally, a proof of concept setup is developed using GoogleMaps[TM] for the case of the City of Madrid, Spain.
Address Ayuntamiento de Madrid, Spain
Corporate Author Thesis
Publisher Information Systems for Crisis Response and Management, ISCRAM Place of Publication Seattle, WA Editor S. French, B. Tomaszewski, C. Zobel
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN Medium
Track Geo-Information Support Expedition Conference 7th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial (down) 803
Share this record to Facebook
 

 
Author Michael Morin; Irène Abi-Zeid; Thanh Tung Nguyen; Luc Lamontagne; Patrick Maupin
Title Search and surveillance in emergency situations – A gis-based approach to construct optimal visibility graphs Type Conference Article
Year 2013 Publication ISCRAM 2013 Conference Proceedings – 10th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2013
Volume Issue Pages 452-457
Keywords Computational geometry; Information systems; Integer programming; Space surveillance; Emergency situation; Gis-based; Integer Linear Programming; Maximum coverage; Search and rescue; Set cover; Terrain data; Visibility graphs; Geographic information systems
Abstract We present a methodology to construct optimal visibility graphs from vector and raster terrain data based on the integration of Geographic Information Systems, computational geometry, and integer linear programming. In an emergency situation, the ability to observe an environment, completely or partially, is crucial when searching an area for survivors, missing persons, intruders or anomalies. We first analyze inter-visibility using computational geometry and GIS functions. Then, we optimize the visibility graphs by choosing vertices in a way to either maximize coverage with a given number of watchers or to minimize the number of watchers needed for full coverage.
Address Department of Computer Science and Software Engineering, Université Laval, Québec, QC, Canada; Department of Operations and Decision Systems, Université Laval, Québec, QC, Canada; Defence Research and Development Canada, Valcartier, QC, Canada
Corporate Author Thesis
Publisher Karlsruher Institut fur Technologie Place of Publication KIT; Baden-Baden Editor T. Comes, F. Fiedrich, S. Fortier, J. Geldermann and T. Müller
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9783923704804 Medium
Track Emergency Management Information Systems Expedition Conference 10th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial (down) 786
Share this record to Facebook
 

 
Author Torbjørg Meum; Bjørn Erik Munkvold
Title Information infrastructure for crisis response coordination: A study of local emergency management in norwegian municipalities Type Conference Article
Year 2013 Publication ISCRAM 2013 Conference Proceedings – 10th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2013
Volume Issue Pages 84-88
Keywords Civil defense; Disasters; Geographic information systems; Information systems; Risk management; Coordination mechanisms; Crisis response; Emergency management; Information infrastructures; Social media; Emergency services
Abstract While great progress is made in terms of development and implementation on new ICT services for supporting crisis response coordination, the challenge remains on how to integrate these services within the ICT infrastructure in daily use by emergency responders. We report from an ongoing analysis of existing crisis response infrastructure in Norwegian municipalities, presenting an overview of current practice and related challenges. We argue for an information infrastructure perspective on the integration challenges, focusing on how new services based on geographic information systems and social media should be based on existing systems in use.
Address Department of Information Systems, University of Agder, Norway
Corporate Author Thesis
Publisher Karlsruher Institut fur Technologie Place of Publication KIT; Baden-Baden Editor T. Comes, F. Fiedrich, S. Fortier, J. Geldermann and T. Müller
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9783923704804 Medium
Track Coordination and Collaboration Expedition Conference 10th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial (down) 771
Share this record to Facebook
 

 
Author P. Lin; S.M. Lo
Title The application of quickest flow problem in urban evacuation planning Type Conference Article
Year 2005 Publication Proceedings of ISCRAM 2005 – 2nd International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2005
Volume Issue Pages 129-130
Keywords Geographic information systems; Information systems; Optimization; Analysis and evaluation; Evacuation planning; Evacuation plans; Evacuation routes; Flow problems; Optimization modeling; Time varying; Urban evacuation; Urban planning
Abstract The provision of evacuation plan for people living in populated urban area is necessary to reduce the possible casualties under disasters. Time-varying quickest flow problem (TVQFP), which can simultaneously optimize the evacuation schedule, evacuation locations and evacuation routes, is adopted to optimize the evacuation planning of a city to minimize the clearance time of residents in danger. The integration of optimization model with GIS environment enables emergency managers to easily identify possible bottlenecks and to observe evacuation patterns in vivid pictures for further analysis and evaluation.
Address Department of Building and Construction, City University of Hong Kong, Hong Kong
Corporate Author Thesis
Publisher Royal Flemish Academy of Belgium Place of Publication Brussels Editor B. Van de Walle, B. Carle
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9076971099 Medium
Track POSTER SESSION Expedition Conference 2nd International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial (down) 704
Share this record to Facebook
 

 
Author Björn J.E. Johansson; Jiri Trnka; Rego Granlund
Title The effect of geographical information systems on a collaborative command and control task Type Conference Article
Year 2007 Publication Intelligent Human Computer Systems for Crisis Response and Management, ISCRAM 2007 Academic Proceedings Papers Abbreviated Journal ISCRAM 2007
Volume Issue Pages 191-200
Keywords Communication; Computer supported cooperative work; Deforestation; Emergency services; Collaborative command and control; Command and control; Emergency response; Fire outbreak; Forest fires; Microworld; Performance; Sensor data; Geographic information systems
Abstract This paper tests the claimed benefits of using geographical information systems (GIS) in emergency response operations. An experimental study comparing command teams using GIS and paper-based maps is presented. The study utilized a combined approach using microworld simulations together with physical artefacts. Participants in the experiment took the role of command teams, facing the task of extinguishing a simulated forest fire. A total of 132 persons, forming 22 teams, participated in the study. In eleven of the teams, the participants were given access to GIS with positioning of fire-brigades as well as sensor data about the fire outbreak. In the other eleven teams, the participants were using paper-based maps. The result shows that teams using GIS performed significantly better than teams with paper-based maps in terms of saved area. Communication volume was considerably reduced in the case of GIS teams. Implications of these results on GIS are discussed as well as methodological considerations for future research.
Address Dept. Computer and Information Science, Linköping University, SE-581 83, Linköping, Sweden; Rationella Datortjänster HB, Muggebo Fridensborg, SE-590 41, Rimforsa, Sweden
Corporate Author Thesis
Publisher Information Systems for Crisis Response and Management, ISCRAM Place of Publication Delft Editor B. Van de Walle, P. Burghardt, K. Nieuwenhuis
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9789054874171; 9789090218717 Medium
Track GISC Expedition Conference 4th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial (down) 637
Share this record to Facebook
 

 
Author Zvonko Grzetic; Nenad Mladineo; Snjezana Knezic
Title Emergency management systems to accommodate ships in distress Type Conference Article
Year 2008 Publication Proceedings of ISCRAM 2008 – 5th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2008
Volume Issue Pages 669-678
Keywords Artificial intelligence; Civil defense; Decision support systems; Disasters; Geographic information systems; Information systems; Risk management; Decision support system (dss); Dss; Emergency management; Emergency management systems; European Parliament; Model-based OPC; Multi Criteria Analysis; Operational research; Ships
Abstract As a future member of the European Union (EU), Croatia has decided to implement EU Directive 2002/59/EC of the European Parliament and of the Council binding all EU member states to define places of refuge for ships in need of assistance off their coasts, or to develop techniques for providing assistance to such ships. Consequently, the Ministry of the Sea, Tourism, Transport and Development of the Republic of Croatia has initiated a project for developing an effective Decision Support System (DSS) for defining the places of refuge for ships in distress at sea. Such a system would include a model based upon GIS and different operational research models, which would eventually result in establishing an integral DSS. Starting points for analysis are shipping corridors, and 380 potential locations for places of refuge designated in the official navigational pilot book. Multicriteria analysis, with GIS-generated input data, would be used to establish worthiness of a place of refuge for each ship category, taking into account kinds of accident. Tables of available intervention resources would be made, as well as analysis of their availability in respect of response time, and quantitative and qualitative sufficiency.
Address Hydrographic Institute of the Republic of Croatia, Zrinsko-Frankopanska 161, 21000 Split, Croatia; University of Split, Faculty of Civil Engineering and Architecture, Matice hrvatske 15, 21000 Split, Croatia
Corporate Author Thesis
Publisher Information Systems for Crisis Response and Management, ISCRAM Place of Publication Washington, DC Editor F. Fiedrich, B. Van de Walle
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9780615206974 Medium
Track Visualization and Smart Room Technology for Decision Making, Information Sharing, and Collaboration Expedition Conference 5th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial (down) 551
Share this record to Facebook
 

 
Author Rego Granlund; Helena Granlund; Nilda Dahlbäck; Björn J.E. Johansson
Title The effect of a geographical information system on communication in professional emergency response organizations Type Conference Article
Year 2010 Publication ISCRAM 2010 – 7th International Conference on Information Systems for Crisis Response and Management: Defining Crisis Management 3.0, Proceedings Abbreviated Journal ISCRAM 2010
Volume Issue Pages
Keywords Emergency services; Information systems; Societies and institutions; Command and control; Communication analysis; Communication pattern; Controlled experiment; Different distributions; Emergency response; Geographical positions; Micro-world simulations; Geographic information systems
Abstract This paper describes the basic communication analysis performed in a research project with an ambition to investigate the impact of geographical information system (GIS) on crisis management organizations. The goal is to compare the communication between command and control teams that have access to a GIS with geographical position information (GPS) capability in its command post with teams that only have access to paper maps. The method used is controlled experiments using the C3Fire micro-world. A total of 108 professionals, forming 18 teams, participated in the study. The participating professionals were members of Swedish municipal crisis management organizations. The result shows that the communication pattern connected to giving orders have a different distribution depending on if the teams used GIS or paper maps. The result also shows that the communication volume is reduced if the teams use GIS.
Address Linköpings universitet, Sweden; Swedish Defence Research Agency, Sweden
Corporate Author Thesis
Publisher Information Systems for Crisis Response and Management, ISCRAM Place of Publication Seattle, WA Editor S. French, B. Tomaszewski, C. Zobel
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN Medium
Track Geo-Information Support Expedition Conference 7th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial (down) 544
Share this record to Facebook
 

 
Author Sébastien Delhay; Mahamadou Idrissa; Vinciane Lacroix
Title PARADIS: GIS tools for humanitarian demining Type Conference Article
Year 2005 Publication Proceedings of ISCRAM 2005 – 2nd International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2005
Volume Issue Pages 213-219
Keywords Bombs (ordnance); Geographic information systems; Information systems; Remote sensing; Agricultural fields; Contaminated areas; Humanitarian demining; Landmine; Paradis; Socio-economic impacts; Unexploded ordnance; Uxo; Satellite imagery
Abstract Landmines and UXO (UneXploded Ordnance1) represent a constant and long-lasting threat to the life of millions of individuals. Moreover, these weapons have a strong socio-economic impact on contaminated countries as they involve serious effects as the loss of agricultural fields or access to water. Demining is a critical issue since contaminated areas are large and their clearance often requires investing much time and money into it. It is then fundamental to manage demining activities in an efficient manner. PARADIS 2 is a tool dedicated to Mine Action and helps demining campaigns planners take rational decisions. It fits the needs of all campaign actors, as it is based on the tasks assigned to both the campaign planner and the field operator. The tool is built upon GIS technology and uses satellite imagery as a substitute for background maps, in order to represent all data involved in demining in their most explicit form: a map.
Address Signal And Image Center (SIC), Royal Military Academy (RMA), 30, avenue de la Renaissance, 1000 Bruxelles, Belgium
Corporate Author Thesis
Publisher Royal Flemish Academy of Belgium Place of Publication Brussels Editor B. Van de Walle, B. Carle
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9076971099 Medium
Track GEOGRAPHIC INFORMATION SYSTEMS Expedition Conference 2nd International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial (down) 441
Share this record to Facebook
 

 
Author Nuala M. Cowan
Title A geospatial data management framework for humanitarian response Type Conference Article
Year 2011 Publication 8th International Conference on Information Systems for Crisis Response and Management: From Early-Warning Systems to Preparedness and Training, ISCRAM 2011 Abbreviated Journal ISCRAM 2011
Volume Issue Pages
Keywords Data structures; Geographic information systems; Information systems; Framework; Geo-spatial; Humanitarian; Relief; Response; Information management
Abstract The success of humanitarian relief efforts is contingent upon the quality and timeliness of information provided to both the decision making and coordinating functions. Poor or fragmented information can lead to inappropriate decisions or poorly coordinated activities. This research focuses on how the application of spatially aware technologies can allow the information dimension of the challenge to become more effective. This will be achieved through the development of a comprehensive framework for the organization of spatially referenced humanitarian information, and corresponding geospatial data model for practical application in the field. The development of a spatial data framework that is both comprehensive and scalable can unleash the power of GIS for humanitarian data managers, and facilitate the collection and sharing of information between agencies that share similar goals. The research involves the development of a framework based on a literature review of best-practices, which will be refined and tested through interaction with the humanitarian information management community.
Address George Washington University (GWU), Institute of Crisis, Disaster and Risk Management (ICDRM), United States; George Washington University (GWU), Department of Geography, United States
Corporate Author Thesis
Publisher Information Systems for Crisis Response and Management, ISCRAM Place of Publication Lisbon Editor M.A. Santos, L. Sousa, E. Portela
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9789724922478 Medium
Track Geographic Information Science Expedition Conference 8th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial (down) 418
Share this record to Facebook
 

 
Author Albert Y. Chen; Feniosky Peña-Mora; Saumil J. Mehta; Stuart Foltz; Albert P. Plans; Brian R. Brauer; Scott Nacheman
Title A GIS approach to equipment allocation for structural stabilization and civilian rescue Type Conference Article
Year 2010 Publication ISCRAM 2010 – 7th International Conference on Information Systems for Crisis Response and Management: Defining Crisis Management 3.0, Proceedings Abbreviated Journal ISCRAM 2010
Volume Issue Pages
Keywords Artificial intelligence; Decision support systems; Disaster prevention; Disasters; Geographic information systems; Information systems; Lifesaving equipment; Radio frequency identification (RFID); Equipment allocation; Illinois fire service institutes; Resource repositories; Situational awareness; Structural condition; Structural stabilization; Urban search and rescue; Urban search and rescue operations; Emergency services
Abstract Efficient request and deployment of critical resources for urban search and rescue operations is vital to emergency response. This paper presents a RFID (Radio Frequency Identification) supported system for on-site data collection to communicate structural condition, to track search and rescue status, and to request and allocate appropriate resources. The system provides a unified interface for efficient posing, gathering, storing and sharing of building assessment information. Visualization and easy access of such information enables rescuers to response to the disaster with better situational awareness. Resource requests are sent to the GIS resource repository service that enables a visual disaster management environment for resource allocation. Request and deployment of critical resources through this system enables lifesaving efforts, with the appropriate equipment, operator, and materials, become more efficient and effective. System development at the Illinois Fire Service Institute has shown promising results.
Address University of Illinois, Urbana-Champaign, United States; Columbia University, United States; Construction Engineering Research Lab, United States; Universitat of Politècnica, Catalunya, Spain; Illinois Fire Service Institute, United States; Thornton Tomasetti, United States
Corporate Author Thesis
Publisher Information Systems for Crisis Response and Management, ISCRAM Place of Publication Seattle, WA Editor S. French, B. Tomaszewski, C. Zobel
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN Medium
Track Open Track Expedition Conference 7th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial (down) 388
Share this record to Facebook
 

 
Author Seyed Hossein Chavoshi; Mahmoud Reza Delavar; Mahdieh Soleimani; Motahareh Chavoshi
Title Toward developing an expert GIS for damage evaluation after an earthquake (case study: Tehran) Type Conference Article
Year 2008 Publication Proceedings of ISCRAM 2008 – 5th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2008
Volume Issue Pages 734-741
Keywords Disasters; Expert systems; Geographic information systems; Information systems; Managers; Damage evaluation; Earthquake disaster; Emergency response; Historical data; Knowledge base; Knowledge-based model; Scientific studies; Strong earthquakes; Earthquakes
Abstract In an earthquake disaster, having proper estimation about destructed buildings and the degree of destruction, can considerably facilitate decision-making and planning for disaster managers. Using this information, the managers can estimate disaster area and number of victims to determine and allocate required resources. Scientific studies and historical data show that the faults around Tehran, the capital of Iran, are capable to create strong earthquakes which would bring the largest damages in the world history to the city. So it is necessary to be prepared for a rapid and knowledge-based response to such an earthquake. Therefore, development of a knowledge-based model to estimate destruction of buildings is ongoing. The model is going to be developed by using different spatial data obtained from the buildings and its environment in Tehran. This paper outlines the initial results of this research.
Address Dept. of Surveying and Geomatics Eng., College of Engineering, University of Tehran, Teharan, Iran; Technical Institute of Surveying and Mapping, National Geographical Organization of Iran, Iran
Corporate Author Thesis
Publisher Information Systems for Crisis Response and Management, ISCRAM Place of Publication Washington, DC Editor F. Fiedrich, B. Van de Walle
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9780615206974 Medium
Track Geographic Information Science Expedition Conference 5th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial (down) 386
Share this record to Facebook
 

 
Author Mifan Careem; David Bitner; Ravindra De Silva
Title GIS integration in the Sahana disaster management system Type Conference Article
Year 2007 Publication Intelligent Human Computer Systems for Crisis Response and Management, ISCRAM 2007 Academic Proceedings Papers Abbreviated Journal ISCRAM 2007
Volume Issue Pages 211-218
Keywords Database systems; Disaster prevention; Disasters; Information management; Management information systems; Data management software; Disaster management; Disaster response; Geographic location; Information and communications technology; Large amounts of data; Natural disasters; Time constraints; Geographic information systems
Abstract Disaster Management often involves using Information and Communications Technology (ICT) to manage large amounts of data efficiently. Data gathered from disasters are often related to geographic locations, such as the affected geographic region, thus requiring special forms of data management software to utilize and manage them efficiently. Geographic Information Systems (GIS) are specialized database systems with software that can analyze and display data using digitized maps and tables for decision making. Preparing and correctly formatting data for use in a GIS is nontrivial, and it is even more challenging during disasters because of tight time constraints and inherent unpredictability of many natural disasters. This paper describes the important role of GIS in disaster management, and discusses the most common characteristics of GIS and their potential use in disaster response. We follow up with a detailed description of the GIS prototype in the Sahana Disaster Management System.
Address Lanka Software Foundation, Sri Lanka; DbSpatial, Sri Lanka
Corporate Author Thesis
Publisher Information Systems for Crisis Response and Management, ISCRAM Place of Publication Delft Editor B. Van de Walle, P. Burghardt, K. Nieuwenhuis
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9789054874171; 9789090218717 Medium
Track GISC Expedition Conference 4th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial (down) 373
Share this record to Facebook
 

 
Author Andrea Capata; Andrea Marrella; Ruggero Russo; Manfred Bortenschlager; Harald Rieser
Title A geo-based application for the management of mobile actors during crisis situations Type Conference Article
Year 2008 Publication Proceedings of ISCRAM 2008 – 5th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2008
Volume Issue Pages 219-229
Keywords Civil defense; Disasters; Geographic information systems; Information systems; Mobile devices; Mobile telecommunication systems; Risk management; Web services; Crisis situations; Emergency management; Geographic information; Manet; Outdoor environment; Peer to peer; Pervasive computing applications; Transparent access; Mobile ad hoc networks
Abstract The widespread availability of network-enabled handled devices has made the development of pervasive computing applications an emerging reality particularly suitable for managing emergency/disaster situations. Moreover in emergency management scenarios, Geographic Information Systems (GIS) are gaining momentum for their capacity to capture, analyze and manage geo-referenced data. In this paper we discuss an architecture designed to support rescue teams operating in outdoor environments and equipped with mobile devices working in a P2P fashion within a Mobile Ad-hoc Network (MANET). Our system has been designed to effectively address the on-field working persons' need for geographic information that cannot be supplied by conventional paper-based maps. Our approach provides a transparent access to geo-information and to GIS functionalities, and it addresses issues specifically relevant to emergency management scenarios in open fields.
Address Dipartimento di Informatica e Sistemistica, SAPIENZA Universit di Roma, Italy; Salzburg Research Forschungsgesellschaft M.b.H, Austria
Corporate Author Thesis
Publisher Information Systems for Crisis Response and Management, ISCRAM Place of Publication Washington, DC Editor F. Fiedrich, B. Van de Walle
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9780615206974 Medium
Track Process- and Geo-aware Systems for Crisis Management Expedition Conference 5th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial (down) 370
Share this record to Facebook