Mauro Falasca, Christopher W. Zobel, & Deborah Cook. (2008). A decision support framework to assess supply chain resilience. In B. V. de W. F. Fiedrich (Ed.), Proceedings of ISCRAM 2008 – 5th International Conference on Information Systems for Crisis Response and Management (pp. 596–605). Washington, DC: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: Our research is aimed at developing a quantitative approach for assessing supply chain resilience to disasters, a topic that has been discussed primarily in a qualitative manner in the literature. For this purpose, we propose a simulation-based framework that incorporates concepts of resilience into the process of supply chain design. In this context, resilience is defined as the ability of a supply chain system to reduce the probabilities of disruptions, to reduce the consequences of those disruptions, and to reduce the time to recover normal performance. The decision framework incorporates three determinants of supply chain resilience (density, complexity, and node criticality) and discusses their relationship to the occurrence of disruptions, to the impacts of those disruptions on the performance of a supply chain system and to the time needed for recovery. Different preliminary strategies for evaluating supply chain resilience to disasters are identified, and directions for future research are discussed.
|